生活環境教材研究 「ミニチュア風洞の作製とシミュレーション実験」

<table>
<thead>
<tr>
<th>著者</th>
<th>惠下 敦、猪野 進一、福永 道尚、嶋末 武、前川 智、秋山 博臣、隈本 幸一</th>
</tr>
</thead>
<tbody>
<tr>
<td>雑誌名</td>
<td>宮崎大学教育文化学部紀要 四自然科学</td>
</tr>
<tr>
<td>巻</td>
<td>未定</td>
</tr>
<tr>
<td>ページ</td>
<td>未定</td>
</tr>
<tr>
<td>発行年</td>
<td>未定</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/10458/923</td>
</tr>
</tbody>
</table>
生活環境教材研究 Ⅱ
「ミニチュア風洞の作製とシミュレーション実験」

恵下敏・猪野進一・福永道尚・嶋本武・前川智
秋山博臣・隈本幸一*

Study on Teaching Materials for Living and Environment, Ⅱ
“Design of a Miniature Wind Tunnel and Simulation Experiments”

Osamu EGE, Shinichi INO, Michitaka FUKUNAGA, Takeshi SHIMASUE,
Satoru MAEKAWA, Hiroomi AKIYAMA, and Kouichi KUMAMOTO

要 旨

物理学を基礎にした分野から、生活環境教育への１つのアプローチとして、広く小学校から大学初等まで使える、安価で実用性の高い実験用教材を作製した。それは市販の換気扇と厚紙の空気整流器からなるミニチュア風洞で、一様でストレートな風を作りだすことができる。これを用いてビルの谷間に吹く風や盆地あるいは競技場等に吹く風のシミュレーションを試みた。その結果、そういった場所では気象的に広範に吹く風に逆って、部分的には逆方向に吹く風があることに対応するようなシミュレーション結果を得ることができた。また、種々の小道具を使うと、翼・ヨット・風力発電などについても遊びを交えてシミュレーションできるので、工夫すれば低学年用にもさらに効果的な教材化が可能であると思われる。

Approaching to living and environment education based on physics, we designed a low cost and useful teaching material, a wind tunnel, which could be widely utilized from an elementary school to first grade of a university. It is composed of a usual air fan and a thick mesh made of paper, and can make uniform and straight wind. We simulated the winds blowing among buildings and running across basins or stadiums, using this wind tunnel and reduced sets. It was clarified that the winds were partially blowing to the opposite directions against to the atmospherically blowing winds in the sets. As one can play with optional models or devices such a wing, a yacht, or a wind dynamo in the wind of the tunnel set, this teaching material may be developed into more interesting one to fit for lower aged persons.
1. はじめに

近年、生活環境をめぐる問題が社会的にもクローズアップされており、環境教育についても非常に重要視されている。そのような中で、生活環境について物理分野からアプローチできることを探してみたい。しかし物理で取り扱う対象としては、物の動きや変化、あるいはそこに働く力、またその背後にあるエネルギーなどあまり多くなく、しかも複雑な問題に取り扱うことが困難と思われる。我々のグループはこれまで、文献[1]にあるように、物理の分野から川の流れをテーマにして、「流される流されない」という問題を設定して、簡単なシミュレーション実験を試みている。そこでは化学・生物・地学・物理の4領域から1つの川に対して学際的にアプローチして、それぞれの分野からの結果を重ねてみて共通に言えることは何かを探究する取り組みで、不十分ながらも1つの共通因子のようものが得られたことは興味深いことであると思われる。

今回は幅広く教材として使えるミニチュア風洞を作製し、風（空気の流れ）をテーマにして、ビルに吹く風・盆地に吹く風などについてシミュレーション実験を行った。さらに、この風洞を低学年用に教材化するために、風の中で走るヨット、あるいはプロペラを用いた風力発電など風の持つ力やエネルギーを体感するための小道具を作り、平成12年8月に行われた「青少年のための科学の祭典２０００」（宮崎）に出展する取り組みも行ったので、資料としてそのレジメを論文末に添付している[2]。

2. 教材の製作 <ミニチュア風洞および小道具>

図1にあるように、換気扇と空気整流器と筐体用ペニヤ板を組み合わせて、ミニチュア風洞を作る。

![図1](image)

換気扇は交流100V用の市販のものでよい。換気扇による風は回って出てくるので、それを一様でまっすぐな風に整流する必要がある。そこで、形状がそろった多数の厚紙に幅をそろえて楕円形の切り目を入れて、それらの切り目と切り目を差し込み合わせて厚いメッシュの空気整流器を作る。風洞から出てくる風は真ん中より周囲の方が強い傾向があるので、空気整流器の構造は中窓に近い部分よりも内側の経路が短くなるようにした方が、風は均一になると
生活環境教材研究 II

考えられる。風洞はスライダックにより多少風速調整ができるようにしておくと便利である。

小道具としては図2にあるように、まず風速風向を調べる簡易のセンサーとして、細い棒の先に木製の穴付けたもの（風センサーと呼ぶ）が必要である。この風センサーではもちろん定性的な測定はできないが、構造が簡単に分かりやすいので、これを用いると、風速風向について特に低学年であってもよくわかる。いわば定性的な測定は可能である。

その他として、実験例に応じて、ビル模型や盆地模型あるいはベルヌーイの定理検測用の穴あき翼（塩ビパイプの半分に穴を開けて、円周の外と円内の圧力差が測れるようにしたもの）から、プロペラ付モーターや発泡スチロールのタイヤをもつヨットなどの小物まで、いろいろな小道具を準備する。

3. シミュレーション実験

生活環境について、シミュレーション的な知見を得る1つの手段として、ここではミニチュア風洞・ミニチュアセット・小道具類を用いた実験を行う。たとえばビル風や盆地風などについて、風センサーを使ってシミュレーション的に調べる場合は、高さによって風速風向は微妙に変化するので、(1) ビル風など平面的な風の分布を測るときは、測るべき高さを統一して測り、(2) 盆地風など斜めの面の風の分布を測る場合は、位置と高さを変えながら測ることが必要である。風センサーの使い方は風の中にセンサーの棒を立て、棒の先に付いた糸の向きと傾きで風速風向を読みとる。風速風向を矢印で記録するには、糸の向きを矢印の向きにし、糸の傾きでできる水平成分を矢印の長さに見立てる。なお、気流が乱れて矢印が定まらないところでは乱れている範囲に点線の丸印を書くとそのありさまがよくわかる。

(1) ビル風

建物の反対側にまわったら風向きが変わったということを体験した人は多いかと思われる。風センサーを使うことによって、これがどのようなメカニズムによるものかを体験する。図3は風洞からの気流の中にビル模型を置いた場合の平面的な風の分布であり、風センサーによる矢印で気流の風速風向を定性的にシミュレーションしたものである。

ビルの裏側で風洞からの風に反対向きの風が観測されているが、これはビルの風下にできたビルサイズの洞の一部であることがよく理解できる。点線丸印が複数描かれているところは、前述のように気流に乱れがあるところである。
(2) 盆地風（競技場風）
こちらは縦の面の風となるので、方眼紙に書き取ることは難しいが、風センサーでみると学によって、縦方向の風の存在に気づく。野球場などの競技場では盆地形がもっと極端になるので、さらにその効果が大きくなることが予想される。その様子を大まかに図4に示す。
甲子園の内野上空にあがった打ちは予想しない動きで内野手を困らせるで有名であるが、この実験から言えることは、内野に高く上がった打球がいったん浜風に乗ってパシスクリーン上の旗の方向に流されるが、落ちてくるにしたがって今度は逆方向に流されるので、内野手は大いに戸惑うことが予想される。

(3) 翼の揚力とベルヌーイの定理
飛行機の翼に働く揚力についても、簡単にシミュレーションしてみることができる。それにまずはベルヌーイの定理についてみていく。ベルヌーイの定理は次式で示される。

\[p + \frac{1}{2} \rho v^2 + \rho gh = \text{一定} \]

ここで、\(p \) は気体の圧力、\(\frac{1}{2} \rho v^2 \) 中の \(v \) は気体の速度である。\(\rho gh \) は位置のエネルギーに関係する量で、このシミュレーションでは高低差を考える必要がないので一応無視できる。したがって、ここでは \(p \) と \(v \) だけに注目する。すなわち、左辺全体が一定であることから、速度 \(v \) が増せば圧力 \(p \) が減り、\(v \) が減れば \(p \) が増える。ここで、ベルヌーイの定理観測用の穴あき翼を図5のように風洞からの風の中
に置くと、風センサーの糸が穴に吸込まれる様子がよく
わかる。つまり、穴あき翼の半円の外側は風速が大きいので圧力が低く、半円の内側はそれに
対して風速が小さいので圧力が高い。したがって穴の内から外に空気が流れる。
これは横向きに置かれているが、これを上下に置くと飛行機の翼に近いものとなり、翼の上
部つまり円周部では風速が下部より増すので、それだけ圧力が減るつまり揚力が働くことにな
る。
また、ベルヌーイの定理は自然科学で重要なエネルギー保存の法則を表す方程式を体積で割っ
た形をしていることからわかるように、エネルギー保存の法則の一種と考えることができる。
したがって、このシミュレーションを通じて、自然科学の普遍的な法則について体感できると
言うことができる。

(4) ヨットなどの遊び用の小道具
車輪付ヨットあるいは紙ビールボンボンといろい
ろな遊びを交えた小道具を準備して、主に低学年
の興味を引くことに役立たせる。直接に生活環境
教育を行う前にいろいろなことに興味を持つこと
も大切と考えられる。ここでは車輪付ヨットにつ
いてみていく。図6のようにミニチュア車に帆を
つけたヨットカーを作り、風洞からの風に対して、
車と帆の角度をうまく調整すると、ヨットは斜め
風上の方向に向かって進むことができる。

ここで関係を理解するには多少度の知識が必要とするので、それは低学年生に押しつけ
ないほうがよい。すなわちヨットの帆の裏には前述のビニール風も吹くが、メインの力関係はおよ
そ次のようになる。まず、ヨットの帆にあたった風は帆を風下の方向に押し戻す力F₁を与え
る。次に、幌によって風は横に向きが変えられるので、その反動で幌はその反対側に力F₂を
受ける。F₁は、ヨットの進路方向（斜め風上方向）成分F₁とそれに垂直な抗力方向成分F₂
に分けられるが、F₂は抗力によってうち消されるのでF₂が残る。このF₂の風上方向成分を
F₃とすると、最初のF₁と比べてみて、F₃＞F₁であるならば結局幌は風上に（斜めに）進む
ことができる。したがってこの条件を満たすために、ヨットの帆と車体の向きをいろいろ変え
て、最良の状態を探すことが必要である。

(5) 風力発電
風力発電を実際にやってみて、体感する。プロペラを付けた少電力用のモーターを2つ用意
して、結線し、どちらを風で回してもどちらか回ることを確かめる。風の力でモーターが回り、そ
の発電によって離れたところにある同種のモーターが回る。すなわち、風のエネルギーが回転
のエネルギーからさらに電気のエネルギーに変わり、そのエネルギーが導線を伝わって別のモー
ターを回し、また回転のエネルギーに変わっていく。また、風の強さを強くするように回る。
そういった様子から、エネルギーはその形を変化しながら伝わり、しかも量として保存さ
れていることも実感できる。
4. まとめ

小学校から大学初等まで、幅広く楽しみながら学べる生活環境分野の教材作製として、今回
はミニチュア風洞に取り組んだ。物理学としては生活環境の大きなスケールそのものを取
り扱うことが困難な場合が多くために、ここでもまたシミュレーション実験となった。シミュ
レーションで注意すべきことは、アンケートと同様に、そこから得られる結果が真理あるいは
実体を完全な形で反映しているとはかぎらない点である。このことは当然であるが、油断する
と大きな誤りに陥るがあるので十分注意しておかなければならない。しかし、シミュレーショ
ンにおいては、複雑な系でなくもっとも簡単な系が取り扱われて、結果的に純粋な要素が
抽出されることが多く、それらはまた十分参考になる内容であることも多い。ここでもビル風
盆地風などが課の一部であったことが仮説的に説明できたこと、またいわゆる「甲子園に魔物
が住む」と言われる現象についても1つの見方を示すことができた。この教材をうまく用いる
と、そういった広くは生活環境の一部と見なされる興味深い現象に少し近づくことができるも
のと思われる。

自然の環境の中で遊びながら自然を学べるような環境があれば、もっともすばらしいことで
はあるが、それが得られない場合でも、この種の教材には一種の楽しさがあると思われるの
で、今後このような教材を幅広く開発して、楽しく学べる環境を作っていくことが大切と思われる。

大学の初等での生活環境教育にあっても、やはり物理学の分野は重要であり、エネルギー保
存則やベルヌーイの定理など基本的な法則についての学習も、このような教材を通じて体得す
ることもまた大切なことと考えられる。

文 献

[1] 宮崎大学教育文化学部紀要 自然科学 第1号 1999年9月
2000年8月

（2000年9月30日受理）
風の妙技

宮崎大学教育文化学部 宮崎大学教育文化学部
恵下敷 宮崎大学教育文化学部
猪野進一 宮崎大学教育文化学部
福永道尚 宮崎大学教育文化学部
嶋末武 宮崎大学教育文化学部
前川智 宮崎大学教育文化学部

どんな実験なの？

風洞とは、ムラのない一様な風を出すことのできる装置です。この装置を使って風の動きを調べてみましょう。風の動きの例として「ヨットは風に向かって進むことができるとか、「飛行船の翼は風力という力が生じる」などがあります。これは風の性質をうまく利用している例ですね。他には、建物の周りで風向きが逆になっているなんて不思議な例もあります。そこで今回はコンパクトなミニチュア風洞を使ってムラのない風を起こし、風の動きを調べてみることにしました。

どんな実験があるの？

① ヨットの帆の実験

ミニチュアの車に帆をつけたヨットカーをつくり、風洞の前で走らせてみよう。車と帆の角度をうまく調整すると風に向かって走り出すよ。

② 風力発電の実験

風の力を利用すると発電することもできます。そこで直流式のモーターとプロペラを使って風力発電の実験をしてみましょう。プロペラが激しく回転するほどたくさん発電することができます。今回は発生した電気をつかって人形を回してみることにしました。

③ ピル風洞や盆地風の実験

建物の反対側に回ったとき風向きが変わる現象を、風洞を使って調べてみましょう。風の動きは竹ひごに軽い糸をつけたもので調べます。風洞の前にビルや盆地に見立てたブロックや大きなパイプなどを置き風の向きを調べると、場所によっては逆向きに風が吹いていることがわかります。どんな場所で逆向きになっているか法則が見つかかったらすごいですね。

④ ヒヨーキの実験

発泡スチロールでヒヨーキのおもちゃをつくって、風の中で浮かせてみよう。風洞の風と箱風機の風ではヒヨーキの飛び方は同じなのか？

気をつけよう

換気扇や電熱線など危険な場所をさわらないでください。

もっと知りたくなるために

理科を好きになり、将来理科系に進学して、ペルヌーアイの定理などの流体力学を勉強しよう。