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INTRODUCTION

In this paper, a spectral representation of stochastic fields is given in
a form that is convenient for their simulation or ﬁigital generation of their
sample functions. In a previous paper, Shinozukaz and Jan (1972) discussed a
simuiation technique of multivariate multi-dimensionzl homogeneous as well as
nonhomogenecus processes which represent frozen patterns of stochastic waves
propagating in the direction specified by the wave number vector logated in
the first or last quadrant in an n-dimensional rectangular Cartesian coordi-
nate system for wave numbers, The wave number vector is located in the first
(last} quadrant if all the wave numbers are positive (negative). 1In this
sense, the fields simulated by Shinozuka and Jan are not consistent with the
general spectral representation of stochastic processes, although their simu-
lated stochastic fields satisfy the target power spectral density (or correla-
tion) functions. A revised version of the simulation technique was published
by Shinozuka (1985) to satisfy this situation. The present paper provides a
more detailed analysis in this direction.

The present paper also discusses how timejspace stochastic processes, or
stochastic waves, can be characterized within the framework of z second-order
analysis, In this connection, numericai examples involving seismic array
records in Taiwan (SMARTj1) are worked out. Finally, a brief account is made .
in this paper as to how the spectirzal density functions of bi-variate two—-di-
mensional stochastic flelds or stochatic waves can be estimated from a set of
data in a finite region. Although the present study restricts itself to bi-
variate two-dimensional cases for simplicity, the results may be easily ex-

tended to multi-variate multi-dimensional cases.

2. SPECTRAL REPRESENTATION AND SIMULATION OF BI-VARTATE ONE-DIMENSIONAL
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STOCHASTIC FIELDS

2.1 Complex-Valued Stochastic Fields

In the harmonic analysis of stochastic fields, it is convenient to con~
sider the fields to be complex-valued. Real-valued stochastic fields can be
treated as & special case of complex-valued fields.

The complex stochastic fields f(x) and g(x) c;n be defined such that

£(x) = £y + 1202y

(2.1)

gx) = g x) + 1g(2(x)

where 1 is the imaginary unit and f(1)(x), f(e)(x), g(I)(x) and g(e)(x) are
real stochastic fields as functions of the space coordinate x. The expected

values can be defined as

ELF(x)] = ELr{1 (0] + 1me(2) (3]
(2.2)

Elg(x)] = E[g¢") (0] + 18[g(®) (x)]

where E[+] is the expectation operator.
If the fields are homogeneous with zero mean;

Be( ()7 = Ee2 (07 = Elg{ (007 = Eg(2) ()] = 0 (2.3)
Then, the covariance function matrix can be defined as

Rep(€) Ry (E) ELf(+E)F(0)] EL£(x+E)g(x)]
R(E) = = ) (2.%)

Rp(8) R (E) Elg(x+£)T(x)]  Elg(x+£)8(x)]

where F(x) denotes the complex conjugate of fx); T(x) = f(1)(x) - if(z)(x).

From Eq. 2.4, it cean be shown that the covariance function satisfies the fol-



lowing condition:
Rjk(g) = Rkj(— £) (2.5)

where j denotes f or g and so does k; this notation will be used throughout.
The stochastic fields f(x) and g(x) can be represented by the following
integrals:

=~} [o:]

rix) = [ e¥az,(0) g0 = [ ez (x) (2.6)

- —

where dzf(x} and dzg(x) are the orthogonal Increments satisfying the following

conditions:

de(K) = Zj(K+dK) - ZJ(K) (2.7)

E[de(K)] =0 (2.8)

E[dzj(K)EEk(K)] - E[{Zj(K+AK] ~ ZJ(K)}{ZK(K'+AK') =z, 7] - aF (k) (2.9)

and

E[de(K)ka(K‘)] = E[{Zj(K+AK) - zj(K)}izk(Kr+AK‘) = Zk(n')}] =0 (2.10)

if (x,k+Ax) and (k',k'+Ak') are disjoint. For a'differentiable ij{z), Eq.

2.9 becomes

E[de(K)de(K)] = 8, (k) (2.11)
where
dF,. (k)
_ _ Jk
Sjk(K) = g (2.12)

Substitution of Eq. 2.6 into Eq. 2.4 and use of Egs. 2.9 and 2.10 result

in



[ ik
Ry (&) = [ e Fary, () (2.13)

If ij(n) is differentiable, then the integral of Eg. 2.13 reduces to:

©

R, () = im elKESjk(K)dr (2.1%)

The inverse transform gives Sjk(x) in terms of Rjk(g):

w0

1
S, (k) = 5= [ e

Laad =]

- ik

E _—
ij{s)ca (2.15)

Equations 2.14 and 2.15 represent the well-known Wiener-Khintchine transform

pair.

2.2 Real-Valued Stochastic Fields

Consider that the complex-valued functions ij(x) and Zj(x) introduced

above are represented in terms of orthogonal increments such that

o 1rae{1) - sapt2)
dFﬂJK)-Ehfjk(K) lﬂEk(K)] (2.16)
IRT PN C) PUNE ¢-)
Az, (x) = z[de () = 1dU; (x)] (2.17)
where ngi), ngi), dU§1) and dUég) are real-valued, Substitution of Egs.

2.16 and 2,17 respectively into Eqs. 2.6 and 2.7 yields the following alterna-
tive expressions for Rjk(g) and j(x):

oo

Rjk(g) = % J [cos KEngi)(K) + sin KEdFéi)(K)]

—C

(1)
Jk

I [sin xEdF, ’(x) ~ cos KEdF§i>(K)] {(2.18)



and

©

]

[cos kxau' (k) + sin deU§2)(K)]
.

§(x) = %

*+]

=]

f [sin KXdUgj)(K) - cos deugz)(x)] (2.19)

£

+ 1

rol—

For real-valued stochastic fields, the imaginary parts of Rjk(g) and j{x)
in the previous equations must be zero. This requires that dij(K) and dzj(x)

satisfy:

dij(“ K) = dij(K) (2.20)

and
de(- K) = EEJ(K) (2.21)

Equations 2.20 and 2.21 imply that the real parts of dij(K) and de(K) are
even functions of k, while their imaginary parts are odd functions of k. Be~

cause of this, Egs., 2.18 and 2.19 reduce to

oM (1) . (2)
R (£) = By “(g) = Jo [cos KEQF;, (<) + sin kEdF )7 ()] (2.22)
and
Jix) = 3(1)(x) = f [cos deU§1)(K) + sin KXdU§2)(K)] (2.23)

0

The increments GU§1)(K) and dUéz)(K) must first satisfy the following condi-

tions:
E[dUgn)(x)dUém)(K')] -0 (2.21)

for any combinations of n, m, j and k, while

_.5...



E[dU§1)(K)dU(2)(K)] =0 (2.25)

3
and
(1) (1) _ (2) , {2 L1
E[auj (eydu, "7 (c)] = E[de (k)dU, =" ()] = aF 5" () (2.26)
(2> {1 o A1), (2) _ (2)
E[dUj (<), ()] = E[duj (x)du, ()] = aF 51" () (2.27)

Eguations 2,26 and 2.27, respectively, are derived from Egs. 2.17 and 2.19.

It is not hard to show Eq. 2.25 using Eqgs. 2.26-2.30. In fact,

R e = M e )

It

J | Eleosfxtxrp)}auiM o) + sinfx(x+6)}ev{? ()]

- =

x [OOSK'XdU(1)(K') + sin K‘de(2)(K')
k

k
o

= J [oos{r(x+£)}cos KX E[GU§1)(K)dUi1)(K)]
0

+ cos{k(x+£)}sin kx E[dU§1)(K)dU£2)(K)]
+ sinle(x+£)}eos kx E[dU;e)(K)dU£1)(K)]

+ sinfk(x+g) }sin «kx E[dUéz)(K)dUéz)(K)]]

o

f [cos KEngl)(K) + sin xngéi){K)] (2.31)
0

Especislly when j

k, then from Egs. 2.5, 2.28 and 2.30,

(1) {1),_ (2) -
Rjj (&) Rjj (- ¢, dFjj (k) =0 (2.32)

Hence, Eq. 2.31 reduces to

Rég)(g) = Jo cos KEng;)(K) (2.33)



If dFé;)(K) is continuous, the power spectral density function Sjj(K) can be
defined as in Eg. 2.12. Then, Eq. 2.33 becomes such that

(TJ(g) -2 j cos x£S, , (x)ak (2.34)

The inverse transform gives Sjj(K) as

(1

SJj(K) = - f cos ng (E)dg (2.35)

FromZq, 2.35, it is observed that the power spectral density funection Sj.(K)
is symmetrical with respect to x. Hence Egs. 2.34 and 2.35 are also expressed
gs

w

(£) = [ cos KES (<) e (2.362)

-

\1)

{l)

1 i
S0 = 3 im cos (£)de ~ (2.36b)

2.3 Simulation Methed

We consider the simulation method of the homogeneous stochastic fields
f(x) and g(x)} under the condition that the power spectral density funetion

Sjk(K) is specified such that

Saplx) S, (k)
bifi T
g (2.37)
S .k s K
g {x) gg( )
ng(K) = fg(K)
Since the power spectral density function consitutes the Hermitian and non-

negative definite matrix (Yaglowm, 1962}, Eg. 2.37 can be decompossad as

3 Y- )
211 0 a1q Py la;1 1% 211821

5 5 {2.38)
apq asp 0 PP axarqs |ap1| + [2p|



where asy can be obtained by equating Eg. 2.37 with Eq. 2.38 such that

iwa(z)

iy, (k)
- |aT1|e

311 = Sff(K) e

) Ing(K)I i{wz(K)+a21{K)} i{wz(x) + a21(g)}

a, = —B ¢ - e, |e
21 21
fsff(x)
IR NG DRCIETRC fv. (k)
agp = / B8 = e P < agle ? (2.39)
22 22
Spe(K)
where w1(r) and we(x) are arbitrary phase angles and
—q, In[8p (0]
0:2,'(K) = tan w } {2.40)

On the other hand, the covariance of the orthogonal increment dzj(x) is

given by Eq. 2.17b, that is,

Elaz, d4Z,] = Spp(x)dx
E{dzf dzg] = Spglk)de (2.41)
E[dzg Eig] = Sgg(x)dx

Comparison of Egs. 2.38 and 2.41 motivates the introduction of a new defini-
tion for the orthogonsl inerements GZp end ng to efficiently express the or-

Thogonal increments In terms of the power spectiral density functions as fol-

lows:
4Zp = dZpp (2.42)
= - 7 !
dzg dzgf d_.gg (2.43)
where
E{dz.. az = E[ldz__ GC =0 2.0y
[az,., gg[ af Lyl (2.44)



and similarly

1 (1) L (2)
aZp = [duff 1dU.% ] (2.25)
Crp (1) 20y 1 (1) L (2)
dZ, = 3 [dugf idU e T+ 5 [dUgg idU ] (2.46)
wheres dU§1) and dU{Z) gre real-valued.
ik ik

Substitution of Eqs. 2.42 and 2,43 into Eq. 2.41 and taking into account

Eq. 2.U4 yields Eg. 2.47.

E[dzf Eff], Efazf Efg] ) E[|dsz]2], E[dsz E%EfAT)
E[dzg az,), Blaz_az ] E[dzgfr aZpo), E[|dzgf|2 * |d28g|2]

Comparing Eg. 2.38 with Eq. 2.47, the orthogonel increments can be obtained

such thsat
V= iy, ()
dZ_..(k) = |a dk e
t H i{w1(K)+321(K)}
dZ (k) = [a21IJEE e (2.48)
g 1, (x)
dzgg(x) = ]a22|/E§ e

also, taking into account Egs. 2.45 and 2.46,

du§;}(z) = 2|z, |Vax cosy (k) (2.492)
dUé?)(K) = - 2|a,, |Vdk siny, (x) (2.490)
dUé})(K) = 2]a,, [Ydx cos{y, (x) + c21(m)} (2.49¢)
dUéi)(K) = - 2]a, |Va% sinle () + oy (0)] (2.494)
dUé;)(n) = 2|a22|J3E cosd, () (2.49e)
dUéZ)(K) = = 2]a,, [Vak siap,(e) (2.197)

In Egs. 2.48 and 2.49, the arbitrary phase angles ¢1{K) and wz(x) must be
appropriate random functions so that the orthogonal incrament de(K) satisfy

the orthogonzal conditions as given in Egs. 2.16 and 2.17. If we choose inde-



pendent random phases uniformly distributed between 0 and 2r for ¢q(“) and
wz(K), it is easy to show that Eqs. 2.48 and 2.49 satisfy Eqs. 2.16 and 2.17,
reSpectiveiy.

From Egs, 2.26, 2,45, 2,%6 and 2.49, the real-valued stochastic fields

f(1)(x) and g(1)(x} can be expressed &s

= J 2]211(K)[JEE cosikx + w1{K)} (2.50a)
0

L]

4

~—
!

g(1}(x} = fo 2|a21(z)[JEE cos{rkx + Py (k) G2](K)}

+ f 2la,,(x)|/dx cosikx + v, (k)} {2.50b)
o 22 2
The integrals mean
(1) 3 ‘
)= 11w ) 2la, (k) |VEk cos{x x + ¢, } (2.51a)
. 11"n nt T M
x>0 n=1 n

and

N
(x) =1im } 2[a21(Kn)|JEE OOS{KnX ol a21<KX )}
Ak=+0  n=1 n n

g(1)

+ a +
2la,,(x ) [VEK cosix x wen} (2.51b)
Equation 2.50 is identical to that used by Shinozuka and dan {1972). A4is
shown by them, making use of the FFT (Fast Fourier Transform) tschnigue in the
summations appearing in Eq. 2.50 drastically reduces the computing time,

3. SPECTRAL REFRESENTATION OF BI-VARIATE TWO-DIMENSIONAL STOCHASTIC FIELDS



3.1 Complex—-Values Stochastic Fields

The previous procedure described in Section 2 ¢an be directly used for
the bl-variate two-dimensionzl case., Almoft zll1 the equaticons in Sections 3
and Y are similar, but the equations for real-valued fields are quite differ-
ent. This difference is alsc quite important in the simulztion of real-valued
stochastic fields as explainsgd in the numesrical exemples (see Section 6). To
explain the difference, a similar procedure and eguations are provided.

The complex stochastic flelds r(x,y) and g{x,y) can be defined as

£(x,y) = 200,y + 1808 (x,y) (2.1)

glx,y) = gV G,y + 12890 (v (3.2)

where i = v~ 1, f(j)(x,y), f{z}(x,y), g(i){x.Y) and g(z)(X,Y) ere real sto-

chastic fields, and x,y denote real ¢oordinates. The mean can be defined as

(1),

elrtx,v)] = E[£' P, 1] + i2[e®) (x, 1)) (3.3)

E[E(X,Y)] =

)
=1
—

sy

x,9] + 1£[g¥ (x,1)] (3.1)

where E[+] is the expectation operator.
Now suppose that the fields are homogeneous stochastie fields with zero-

mezn. Then, the covariance function of the fields can be defined in matrix

form suen that

g . -
Rop(E,0E s Ro (6,80 BLECxrg,, 748 0T B[R (xeE L, y0E DB (3,
R(E:E)= =
%7y
, Rgf(ax,iy), Egg(ax,ay) E s(x+£x,y+£y)f(x,y)]TE[g(x+£X,y+£y)g(x,yi
L-_ M
(3.5)

where T(x,y) denotes the complex conjugate of f{x,y), i.e., T(x,y) = f{1)(x,y)



- 1r@)(x,y). Thus

Rjk(EX'Ey) = Bkj(_ 52,' gy) J,k=T,g (3-6)
that is, the covariance matrix for bi-variate stochastic fields constitutes
Hermitian. In particular, the variances of the diagonal term are real and

pesitive, that is,

1]
1
It

E[{f(”(x,yj}2 + {f(z)(x,y)}z) (3.7)

el{e Mol + 8P )] (3.8)

Var[f] = Ree(0) = E[£(x,y)T(x,y)]

o rl =z
Varigl = Ry (0) = E[g(x,y)8(x,v)]

It can be shown for the homogeneous stochastic fields f(x,y) and glx,y),

that the covariance function Rjk(gx,gy) (j,¥ = £,g) can always be reprssented

as follows {(Yaglom, 1962):

® o i(Kx£x+Ky
Roleng) =] [ e

bl <Rl -]

Ey)
dij(KX,K}r) (3.9)

and the fields themselves can be represented as

® @ j{k_X+tk_¥
(i x*k_y)

£(x,y) = LL e y d@(gx,xy) (3.10)
e o  i(g x+k v}.
C ey o > S A
gix,y) Lo_m g °~‘g("x"<y) (3.11)

where the integral means the Fourier-Stieljes integrzl standing for the limit

feor instance, for the integral of Eq. 1.10,

ab i(k_x+k_ y)

1
',_.J
=
H

—y
—
0]

f(}l,}*') = dzj(Kx:Ky)

N oM i‘{“x,nX+Ky y)
=lim{lim 7§ Yooe {ZD(KX +AKX,Ky +Axy] (3.12)

a»® Ax 0 n=-N m=—M t n m
D

AKy*O



- Z Ky +AKX,KY ] - Z

n m

el

wehre the summation is over all the subjects appezring in the partition {see

Fig. 1.1)
- & = KX < e Kx ere < KX = a
=N n N
- b=« < .. ¥ Lol <8 = b (3.13)
Yo Vi Y%
A =k - KX s Ak =k - K
x >km m- ym ym-1

The function ij(zx,xy} which i3 a non-negatie and non-decreasing function is

called the speetrel function of the fields f(x,y) and gix,y)}. When the funec-

tion F‘k(Kx’Ky} is continuous, its derivative is czlled the spectral density
J

function Sjk(Kx'Ky)’ that is

2
8 FJk(KX,Ky}

Sjk(Kx’Ky} = S (3.14)
Xy

Then, the Fourier-3tieltjes integral of Eq. 3.9 reduces to the Fourier inter-
val a8
@ -5 iik +x
i{k & +c E ]

= yy
Rjk(ax,sy) =[] e Sjk(Kx,Ky)dede (3.15)

—C =g
The inverse transformation yields the spectiral density function as

N [ * _i(KX£X+KY£y] . ’
Si (ko) =maz | [ e Ry (BB, )06 A8 (3.16)

Equations 3.15 and 3.16 are the well-known Wiener-Knintchine relationships.

Turning to the representations of stochastic fieids given by Egs. 3.10

.—i 3



and 3.11, these representations imply that f(x,y) and g{x,y) can be written as
the sum of many elementary waves exp[i(xxx+xyy)] with complex orthogonal ran-
dom amplitudes de(KX,Ky) and ng(KX,xy), reépectively. The orthogonal random
amplitude is generally called the orthogonal increment which is defined as

follows zand satisfies the following conditions:

de(Ky,Ky) = Zj(xx+dnx,my+dry} - Zj(Kx+de,Ky} - Zj(KX,Ky+de) + 2.k _,k.)

Xy
(3.%7)
. : . . e e
and, if the regions (Kx,.Ky) and (KX,Ky) are disjointed,
Eld dzZ (k' k") i =
A[QZJ(KX,Ky}de(KX,Ky)] ) (3.18)
The covariance of dZ,{x_,x_} and dZ (k_,x ) is
J XY ki x'y
E[de(KX,Ky)de{Kx,Ky)] = dij(Kx,Ky) (3.1%a)
For continuous ij(KX,Ky),
v - ' g
E[de(KX,Ky)qZk(scx,Ky) Sjk(Kx,Ky)dKXde (3.19D)

Due to Egs. 3.18 and 3.19 (orthogonal conditions), it is easily confirmed

that the covarience function is given by Eq. 3.9. 1In fact,

R (8,08,) = B30 ,yvg Dk(x,v)]

© @ o ei}KX(X*ix’+Ky(Y*€y>}e"i{“;x*‘§y}

]
[ S—
—
—
oy

. T ¥ '
x E[GZJ(KX,Ky)de(Kx,Ky)]

w @ i(K£+»<,£]
J J e XYY ﬁij(KX,Ky) (3.20}

—@ =

-1 "-l"‘



In deriving the last element of Eq. 3.20, Egs. 3,18 and 3.19 have been used.

3.2 Real-Valued Stochastic Fields

In this section, we consider real-valued stochastic fields using the re-
sults described in Section 1.1. Suppose the complex-valiued spectral distribu-
tion funection ij(Kx,Ky) and orthogonal function Zj(xx,rv) are represented in

terms of the increment such that

1 {1 {2}
{ = = -

aF (koK ) = 5 [dF MECRTIDIE L S y)] (3.21)

1 {1) (2)
de(acx,Ky) =3 [de (zx,xy) U (ks y) (3.22)
where dF(k) and 0?52) are real-valued spectral distribution functions assoeci-

f

ated with the real and imaginary parts of dFJk The functions dU31) and dU§2)

are also real-valued increments associated with the real and imaginary parts
of de.
Substitution of Eas. 3.2% and 3.22 into Egs., 3.9-3.11 yields alternative

expressions for R (g g } and j(x,¥) such as

@ o

(£.,8) = % J f [cos[x g ¥« g Jdr (1)(KX,Ky} + Sin[KXEX+KyEy)dF§§)(Kx,Ky)]

+ 1 % { ! [sin(mxgx+KyEy]dF§L)(KX,K ) - cos(k E *kyEyJOng)(KX,K )]

(3.23)

and the fields f(x,y) and g(x,y) are for j = f,g,

.—1 5_



J j sin(k x+xyy)du(1)(x Ky ) - coslk X+KnydU(2)(K ,Ky)]

i
i

(3.2h)
For real-valued stochastic fields, the imeginary parts of Rjk(gx,gy) and
jix,y) given by Egs. 3.23 and 3.24 must be zero. This condition requires the

following relationships for dF (Kx,Ky) and de(xx,Ky):

Jk

dij(“Kx,“Ky} = Jx(Ky" ) . (3.25)

dij(“Kx,Ky) = dij(KX,--Ky (3.26)
and

dzj(—xx,-xy} = dZ(KX,Ky) | (3.27)

sz(’KX,Ky) = dZ(KX,“Ky) ' {3.28)

Eguations 3.25 end 3.26 imply thet the bi-spectral distribution functions

(k ,K ) and F. (k ,“Ky) are necessary for representing the covariance fune-

Jk Jk

tion Réi)(gx,gy) of the real-valued homogeneous stoéhastic fields 3(1)(x,y)
and k(i)(x,y) (see Fig.lZ). Equations 3.27 and 3.28 zalso imply that the two
orthogonal increments dzj(Kx’Ky) and dzj(Kx,Ky) are needed for the spectral
representation of the reazl-valued stochastic Tield j(e)(x,y) (see Fig. 2a).
if ij(Kg,Ky) JR(K -k ) ar Z, (KX,K Y o= Zj(mx—xy), the stochastic field is
called quadrant symmetry (see Fig. 2b).

Substitution of the conditions given by Egs. 3.25-3.28 into Egs. 3.9-3.11

or Egs. 3.23 and 3.24 yields the required fundamental expressions for real-

valued two—dimensional stochastice fields such that

(1)
Ry (B0E,) = Ry (8,80

@ «©

_ [ f leos(k g +x £ yart Vi«
X X Jjk

K ) F szn[z E
o0 ¥y y X

+x E )Qr(e)(x ,K )]
Yy

X X

o« o

Iofo COS[KXQ“‘Kyﬁy]dF‘Ek)(K;& “Ky— T Sln(Kng Kygy dFJE (e, _K}r)]

-1 6..



(3.29)

where j = f,g and the Tield itself is

J,y) = 3 GGy
= Iojo [cos(mxx+zyy]dU§1)(Kx,Ky) + sin(xxx+xyy)dU§2}(Kx,xy)}
o _ SO PN S 2y,
+ jofo [cos(xxx Kyy)de (Kx, Ky) 51n(kxx Kyy]duj (KX, Ky}]

(3.30}

where j = f,g.
For homogeneity of the resl-valued stochastic field given by Eg. 3.30, it

is easily show that the following requirements exist:
- (n) (m) bt =
n[de CHRLLN (KX.KY)] =0 (3.31)

Ifn=mor if n=m {n,m = 1,2) and the regions (Kx,Ky) and (K;’“§) are dis-

Jjointed, and

o (1) (2] -
L[de (Kx,Ky)dLj (KX,Ky)] = 0 (3.32)
and alsc
E[GU§1)(KX,Ky)dUi1)(KX,Ky)] - E[dUée)(KX,Ky)dU£2)(Kx,Ky)] - - dF;L)(KX,Ky)
(3.33)

il

2ra2) (D) a1 (2) N ¢-3)
L[an {KX,Ky)OJk (KX,Ky)] b[de {KX,Ky)dUk (Kx,Ky)] = dF (KX,Ky)

The second equalities in Egs. 3.33 and 3.34, respsctively, are derived from

Egs. 3.192 and 3.2%, It is not hard to show Eq. 3.29, using the spectrzl rep-



resentation of the field j{x,y) given by Eq. 3.30 and the orthogonal condi-

(1)

tions for the real-valued increments duU;

In fact,

(1)(5 ) = £l ) (e 34E, )k(1)(x,y>]

[ =T - - T

JOIOIGIO E[cos{ x(X*Ex)+Ky(y+E )}dU(1)(K

+ szn{x {X+g )*K (y+£ )dU(z}(K ; y)

(TJ(K ,

+ cos{K AXHE )=k (y+£ )}duJ -k_)

<
+ sinfi,(xg ) -k (rrg )00 (e o )]
% [cos{xé(x+£x)+xé(y+iy)}dU§1)(K;,K§)
+ sin{K;(x+gX>+K§(y+gy)}duge)(K;,K§)
. COS{K;(X+EX)"K§(Y+EY)}GU§1)(K%,"Ké)

+ sin{z;(x+gx) - K}(y+£y)}dU§2)(K;,“K;I)]

and dU

,K )

(2)

given by Egs.

3.31-3.34,

= J J coslc (x+£ )+x (y+£ )}oos[m XK y] [’U§1)(Kx,ny)dU£1)(Kx,xy)]

0¢C

+ GOS{KX(X+§X)+Ky(y+Ey)}Sin{KXX+KyY)E[dU§1)(Kx,Ky)dUiz)(Kx,Ky)]

+ Sin{KX(X+EX)+Ky(Y+Ey)}COS[KXX+Kyy)E[dU§2)(KX,Ky)dU;1)(KX,Ky)]

+ Sin{Kx{X+Ex}+Ky(y+€y)Sin(KxX+KyY}E[dU§2)(Kx’Ky)duig)(Kx’Ky)]]

+ with the (KX,‘Ky) terms in the same form zs in the above elements

=R ]

= J [ [COSLK g +K g )dF{1)(K K )+s;n(x E +k E )GF(Z)(K ,K )]
’ dkox yy' Jk o ox

XX
00

. (2
+ j j [COS(KXEX“KyEy]dFé;)(KX,“Ky)+51n[Kxgx—KyEy]Gbgk)(KX,"Ky)]

090
-1 8_.
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4, SIMULATION METHOD

Consider the simulation problem of the homogeneous stochastic fields
f{x,v} and g(x,y) under the condition that the power spectral density function

S, (zx,zy) is specified such that

Jk
'
Sff(KX,Ky} ng(KX,Ky)
ng(zx,ny) Sgg(Kx’Ky)
ng(nx,Ky) = ngLKx,Ky) . (4.1)

Since the power spectral density function constitutes a Hermitian and non-

negavive definite matrix, Eq. 4.1 can be decomposed as

——

a 0 a a,. [a,. |2 a,.a
11
I B )
! Z z
421 B2 0 %p a3y gy [*+]ag,l
where each element 24y can be obtained as
a = ¥83 (K K ) el¢2(KX,KY) = Ia Izel¢2(KX’Ky)
11 &%’y 11
¢ )] IS (k)] ife (x ,x dra (x Lk )] e (k ,k Yra  (k,
'g x_ ¥ Tty 21 xy 2 1T %y 21 x y
a,, = e = la,. {? e
2t ¥ .k _,k ) 21
ﬂf x! y
3 - Z : -
Sff(Kx’Kylsgg(KX’Ky) ISfS(KX’KY)I l¢2(KX’Ky) l¢2(Kx’Ky}
2yp =V S.. (k%) © = lap,l @
%"y
{(4.3)
where @T(Kx,xy) and ¢2(Kx,Ky) are arbitrary phase angles and
im[s {e_,x )]
-t gy Ty
a,.(k_,k ) = tan 'j (a,1)
21 %"y RelSp (< k)]

On ths other hand, the covariance of the orthogonal increment dz:(Kx,Ky) is
J

given by Eg. 1.19D, that is,

.-1 9.—



e
—
[o )
[y ]
&
™~
]
]
|

£ = Sff(Kx’Ky)dede
E[de czg] = ng(KX,KdeKXde (42.5)
Eldz @Z ] = 5 _ (x_,x )dx_dx

g g Eg X Y Xy

Comparison of Egs. 4.2 and 4.5 motivates the introduction of z new definition

for the orthogonal increments dZ, and dZ, to efficiently express the orthogonal

g

increments in terms of the power spectrel density funetions, such that

ng = ngf + dzgg (L.7)
where

E[dsz dzgg] = E[dzgf ngg] =0 (4.8)
And, similar to Eq. 1.22,

21 (1) _ o, (2) .
4z, = 3 [dUff 1dU7 ] (4.9)
1 (1) _ (2)7 .3 (1) _ . ..(2)
Z == ldu - idy + = |du - .
iz, = 3 [ of idU 7 ] 5 I oo 1du 2 ] (4.10)

where dUEL) and dUgi) are real-valued. Substitution of Eos. 4.6 and 4.7 into
J

Eg. 4.11, taking into account EZq. 8, yields

E[dzf dzf] E[cizf dz } E[[dszlz] E[dsz dzgf]

dz.] ez i ] Blaz . @] B[az |2 + |az

Efdz

L g gg

By comparison of Eqs. 4,2 and 4.9, the orthogonal increments are expressed in
terms of 2i3 which in turn is & function of the power spectral density func-

tion such thet

i¢1(KX,Ky)
Osz(KX’Ky) = |a11|¢anxdxy e

.—20_



ilaw, (k_,x Vo, (x WK )}
_ — 2 xSy T KKy
dZ ok k) = fa,, I/d;cxdxy e
ip,(k,,x )
_ 2 " x" "y
ngg(KX,Ky) = |a22[ dxxdny e (4.12)
Also, equation Egs. 4.9 and 4.10 with Eq. U4.12,
(1) _ ala .
SO (KX,KE) = 2[a11|¢dede cos¢1(KX,zy) (4.13a)
(2) _ . . .
(xx,r ) = 2]311|¢0dezy 51n¢1(xx,<y) (k.13b)
(1) _ _ .
Gu af (KX,K ) = 2]a21jfdxxdxy cos{¢2(xx,ry) + a21(ﬁx’xy)} {4.13c)
. (2) e ala - . |
cUgf (Kx,Ky) = 2]521IVdede Sln{¢1(KX,Ky) - Q21(Kx,Ky)} (4,13a)
1) _ 5la 1
dU . (K'X,Ky) = 2!a22I\/dKXdKY cos¢2(KX,.<y) (4.13e)
+(2) Sy oL . )
4u e (k ,ky) = 2fa22|JdKXde Sln¢2(KX,Ky} {4.13f)

In Eg. 4.12, the arbitrary phase angles ¢1(xx,xy) and ¢2(Kx,Ky) must be appro-
priate random functions so that the rando amplitude dzjk given by Eq.4.12
satisfy the orthogonal conditions given by Egs. 1.18 and 1.19. If we choose
the independent random phases uniformly distributed between 0 and 2w as
¢1(Kw,Ky) and ¢2(KX,Ky), i1t is easy to show that Eq. 4,12 satisfies Egs. 1.18
and 1.19. Hence, from Egs. 1.10 and 1.11, the stochastie fields f{x,y) and
g(x,y) are expressed as

® @ i[KXX+Kyy+¢](KX,Ky)J

f(x,y) = J f e oK )l#dk GK (4.142)

24

s l[KXX+KyY+¢1(KX,Ky)+a2?(Kx,Ky)J

g(x,y) = J J e E! a,,(x ,x )[#dK dx
® @ i[K,x+K v+o.{k,,x )]
T S A |25 (k) /G (4.14b)
— -

standing for the limit



N M i(Kx xR 'y+¢1nm)

Y
flx,y)=14im J I e n m ]a11(KX k. )|V/Ak Ak (4.15a)
AKX+0 n=~-N m=~M n ym Y
Ax_ =0
¥
oy )
g{x,yY = 1lim e la,. (x. ,x |Vak Ak ]
’ ﬂxx+0 n=-N m=—M 21 xn ym ¥
Av >0
yo
i[mex+Kymy+¢2nm)
e Iazz(wx Ky )IVAKXAKy] (4.15b)

n m

For real-valued fields, from Eqs. 1.30 and Eq¢s. 4.9, 4.10 and 4.13:

w o

(x,y) = JO}O 2'811(KX,Ky)I de Ok QOS{XXX+Ky+¢1(Kx’Ky)]

£(1)

+ jojo 2'811(Kx,“Ky}]¢dede OOS{KXX“Kyy+¢2(KX,’Ky)} _(4.16a)

g(T)(x,y) f J 2|a (¢ ,x )V dk cosik x+k y+o (¢ ,x d+ta (k LK)
i b ¢

00 2 X ¥y y X ¥ 1 x vy 21 x ¥y

+

j I 2[a (¢ ,~x )|¢dK dk COS{K XK y+¢ (¢ ,~x J)+a (k ,—K)}
00 2T x ¥ X Yy x ¥ 1 x ¥ 21 x y

+

Jojo 2[a22(xx,xy)|¢dxxdzy cos{KXx+Kyy+¢2(Kx,Ky)}

+

j I 2fa__(k_,~k Y|Yax d& cos{x x—« y+¢ (k ,~k )] (4.16b)
00 22 Xy Xy Xy 2 x ¥

The integrals mean

-.-22..



N M

(1) : v
£ x,y) =1im § §2la,(k, k )|Vhe be coslk. x+k_ yre. |
’ AKX+0 n=1 m=1 B *n Y X v xn ym 1nm
b =+0
y
+ BIaH[KX Ky } ] ﬁKXAKy cos{acx XK Il } (4.17a)
n m n m nm
and
(1) v ——
£ (x,v) = 1im } ) 2|a (. ,x )I»AK ik cosix  x+k y+o, *o..(k_ ,Kk
’ Axx+0 n=1 m=1 2t Xn ym * ¥ xm ym 'nm 2 Xn ym
Ak =0
Y
+ 2|321QKX )R ]IVAKXAKy cos{xx XK y+¢;nm+u21(mx . 1]
n m n m m
+ 2|a22(rx Ky ]I#AKXAKY cos{Kx X*KY ¥+, }
no°m n o nm
+ 2|a22(xx Ky Jl#AKXAKy cos{Kx X+KY y*o, }
no°m n m nm
+ 2[&22[Kx Ky ]|#bzxAxy cos{Kx %Ky y+o4 } (¥.17b)
n 'm n m nm

If the fields f(1)(x,y) and g(i)(x,y) are quadrant symmeiry where the power

spectral density function satisfies Sjk(cx,xy) = Sjk(xx,—zy), then
ajk(KX :Ky ] = a‘jk(KX ,”‘K}' ) J,k=1,2 {#.18a)
no°m n m
“21('%; Ky ) = cg.'[lcx TRy ) (4.18b)
o m n m

Hence, Eg. 4.17 recduces to, for quadrant symmsiry,

..-23.—



N M -

(1) . ——
£y =1im § ] 2la (k. k. )VEx k. [cos{k. xtc y+o ]
’ Axx+0 n=1 m=1 " xn ym Y xn ym. 1nm
hr_ =0
},
* cos{zX x—xy y+¢{ }] (B.19a)
n m nm
and
N M
(23 . r————
g Tlny)=1im [ ) 2la, (k. ,x } VEx _Ex
’ AKX+0 n=1 m=i 21 xn Ym * ¥
Ak +0
Vv

4

——t

y . .
[cos{x X+ vra,, (k. ,x )+¢
Xy Yy 2 *n n nm

(4.18b)

+ eosfe_ x—x_ yta (k. ,k_ J+¢! }]
Xn ym 21 xn ym 1 nm

+ 2la, (k. ,x )!%AK ac_ [eosik. x+k_ y+g }reos{k x~_ y+¢! }]

22 *n Y Y n In 2nm ¥ an

The zbove equations (Egs. 4.17 and %4,19) are suitable for the computer simula-
tion of fgi)(x,y) and g(i)(x,y). Also, making use of the FFT (Fast Fourier

Transform) technigue to the summations appearing in Egs. 4.17 and 4.19, dras-

tically reduces the computing time,

5. TIME-SPACE STOCHASTIC FIELDS

In the previocus sections we were coneerned with stochastic fields whose
sample functions are continuous functions of the Epace coordinates ¥ and y,
We now turn to a more general case where the stochastic fields are funetions
of time t as well as of the space coordinates x and v,

s defined in Sections 2 and 3, %the compiex-values time-space stochastic

.-2]_%..



fields f{x,y,t} and g(x,y,t) can be defined as

r(x,y,t) = £ 0y, 00 + 10@ (x,3,1) (5.1)
gx,v,t) = g (n,y,0) + 188 (x,y,8) (5.2)
where f(i), f(E), g{1) and g(2) gre real-valued stochastic fields. The mezn

is defined such that

ELf(r,y, )] = e (x,y,00] + 12[e® (x,v,t)) (5.3)

Elg(x,y,8)] = 2[g M x,va00] ¢ 165 (x,y,1)] (5.1)

How suppose that the fields are stationary, homogeneous and zero-mean.
Then, the time-space ¢ovariance function of the fields can be written in ma-

orix form as

hN

Qf‘f(gx’gy’.[) ’Qf‘g(gx’gy"[)
_9( E"X’EY’T) = =

\ng(EX,Ey,T),Qgg(EX,EY,T)

-

(5.5)

-~

E[f(x+£x,y+5y,t+1)?(x,y,t)],E[f(x+€x,y+€y,t+T)E(x,y,t)]

E[s(x+€x,¥+ay,t+1)?(x,y,t)],E[g(x+Ex,Y+£y,t+TJE(x,y,t)]

~

rd

From the definition given by Eq. 3.5, the time-space coveriance funciion pos~

sesses Lthe property such that

ijcix’gy’ﬂ = QkJ ("Ex,“iy,"f) Jsk =TI,g (5-6)

that is, the covariance matrix is Hermitian. Transforming the time lag 1 into

the frequency w by means of the Wiener-Khintchine iransform yields the tempor-



al frequency spatial spectral density function ij(gx,gy,w) as a function of

£t
1 iwT
PrlEpbw) = 5 | &% Qg (6,8 D (5.7)

By performing an inverse transformation, one can reclaim ij(gx,gy,T) as

-]

Q (€,,8,,1T) = [ e

-

fwT ..
ij(gx,gy,w)om (5.8)
If the sepzration distances Ex and 5y are zero, the temporal freguency spatial

erosz-spectral density funetion (at any point x and y):

ij(0,0,m) = sjk(w) (5.9)

Normalization of the temporal freguency cross—spectral density function
with respect to its value at Ex = gy = 0 gives the freguency-dependent spatial

govariance function as foliows:

P. (E + & lw)
, _ kT x'y ~
.‘jk(gxsgy:m) = S. (m) (3-10)
Jk

The spatizl covariance Tunction Rj?(gx,gy) can be defined as

Rjk(ix,iy) = ijtax,ay,OD (5.11)
andé hence, with the aid of Eas. 5.8 and 5.10,

=1 o
R = = ‘
P {m Py (B8 pu)do lm 84, (0075, (B By w)du (5.12)

Thus, the spatizl covariance function is a weighted integral of the freguency-
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dependent spatial covariance function ij(gx,gy,m} with the point cross-spec-
tral density function Sjk(w) as the weight. If the time-space stochastic
fields are assumed to be ergodic, the spatial covariance function may be es-

timated from the temporal average such that

T
: . {n) _y—in)

7 - - z -
Rjk\EX,Ey) ij(EX,EY,O} %ig jo J [x+§x,y+gy,t)x (x,y,t)dt (5.13a)
or from the following spatial average

Lx Ly
; 1 An) =(n) _
= : H ] =1 T+ + s
Rjk(ax,iy) QJK(F,X Ey 0) : imm LxLy jo Jo iV x 1Y gyt)k (x,y,t)dxdy
x —
L +e {5.13b)
y’

in which j(n)(x,y,t) represents the n-th sample function of j(x,y,t), where j
= f, g. However, in practice, Eq. 5.13b cannot usuzlly be used since the ob-
servations f(n)(x,y,t) are made at only a few discrete locations along the x
and y axes and therefore the integration of Eq. 5.13b is not possible.

Similerly, transforming the separation distznces Ex and gy into the wave
numbers Ky and Ky by means of the Wiener-Khintenine transform gives the tem-
porel covariance spatial eross-wave number spectral density function

ij(nx,mv,z) as a function of 1:

i . -
vjk(Kx’Ky’T) = 317 i e ij(ax.ﬁy,r)déxoiy (5.14)

By performing an inverse transformation, one can reclainm ij(gx,gy,T) as

S IO )
Qo (B LE 1) = J f e ij{KX,Ky,T)dede (5.15)



Finally, transforming both the time lag t and the separation distances
Ex and Ey into the frequency w and wave numbers Kx and Ky by means of the
Wiener~Khintchine transform gives the Irequency number cross-spectral density
function Sjk(xx,xy,w) such L{hat

@ & ® —i(Kxgx KyEy wT)

S =
3 (Kx,Ky,w}

Qk(ax.ﬁy,w)dgxdaydf {5.16)

from the inverse transformation

® @ ® i(Kx£x+Ky£y+w1) _ .‘
QJK(EX,Ey,T) = I I j e Sjk(nx,xy,w)dnxaxyom (5.173

— R -3

Due to Egs. 5.7, 5.8 and 5.14, the freguency wave number spectral density

funct i to P,
function Sjk(xx,xy,m) is ailso related to PJk(gx,gy,m) and v (KX,Ky,T) such

Jk
that

0 -] "i(K g g J
I X% Yy o .
k% oy - {2n)2 1 e P (E Ey,U)GEngy {(5.18)

&

jr—

-]

and

1 o
Sy (kgokygow) = 5 e (g )aT (5.19)

By the inverse transformaticn

o o i(k £tk E )

Pk ok ) = yoy . N

_jk(kx,ky,w, lm : e Sjk(nx,my,w)cxxdxy (5.20)
iwt -

ij(mx,xy,t} = J e (k_,k_,w)dw (5.21)
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And the point spectral density function Sjk(w) defined by Eg. 5.9 is also

written as

S, (w)

=] o
ik P, (0,0,0) - [ T (5.22)

~m -

Similar to Eq. 5.10, normalization of the frequency wave number spectreal
density function Sjk(Kx,Ky,m) with respect to the point speciral density fune-
tion Sjk(m) yields the frequency—-dependent wave number spectral density func-

ftion &s follows:

- Sjk(Kx’Ky’w)
JkK

(5.23)

(k_,k_,0) =
X'y Sjk(w)

The spatial wave number spectral density function Sjk(xx,my) can be defined as

Sjk(rx,zy) = ij(KX,Ky,O) and hence, with the aid of Egs. 5.21 and 5.23,

Sjk(Kx’Ky)

ij(KX’Ky’O) =

® @
Iﬂ Sjk(KX,Ky,w)dw = im Sjk(w)?jk(xx,xy,m)dm ~ (5.25)
Ls described above, there is a close relationship ameng the various funce~
tions which are summerized in Fig. i. From a general characterization point
of view, the frequency wave number speciral density function Sjk(KX,Ky,w) de~
fined by Eq. 5.16 may be more useful beczuse this function plays a central
role when we perform an analysis similar to that used for the spectral repre-
sentation of stochastle flelds as described in Sections 2 and 3. On the other
hand, the spatizl covariance function Rjk(ax’gy) and the spatial spectral den-

sity function Sjk{rx,xy) are also important functions to characterize the spa-
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tial variation of the time-space stochastic fields j(x,y,t) and k(x,y,t). 1In
fact, the spatial variation of earthquake ground motion displacements is of
megjor sigrnificance for the resopnse of underground lifeline structures such aé
pipelines. 1In Section 5, & numerical example for the spatial variation of

earthquake ground displacement is presented,.

6., NKUMERICAL EXAMPLE¥

To visually illustrate the significance of the simulation equations pre-~
vicusly described, we present here severzl numerical examples of the sample
function of f{x,y) simulated using the simulation equations. Aind also we
present here an example of the seismic ground deformation pattern u(x,y,to) of
a ground surface at time = t5 estimated Ivrom seismic array observation in

Taiwan (SMART-1 Array).

6.1 Simulation Examples

For simplicity, consider the simulation of f(1}(x,y} using Eq. 2.19a

{quadrant symmetry, uni-variate, two-dimensional case). From Eg, 2.19%a:

N M
(1) v ,
f {(x,¥) = 2‘ ) 2JSffLKX ,KY }Arxhxy [cos(KX X+Ky y+¢1 )

n=1 m=1 n " n m - nm

+ { - '
COS{K_ X Ky y+¢1 )] (6.1a)
n m nm
K xu Kyu

h = —— = = = ¥
b, T AKY i Kxn nﬁmx, Kym mAKy (6.1b)

* Note: The figures and computer- codes in this section were provided by F.
Yamazaki (Visiting Scholar, Cclumbia University), Research Engin-
ger, Ohsaki Research Institute, Shimizu Construetion Co., Ltd.,
Tokyo, Japan.
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where ¢1 and ¢; are mutually independent random phase angles, uniformly
nm nm
distributed between 0 and 2.

Equation 6.1 signifies that a sample function f(1)(x,y) ¢an be expressed as
the sum of many elementary waves cos[rx X+ ¥4, ) and cos{x_ x—« yro! )
n

X y
n I nm n m m
which propagate in the A and B directicns, respectively, as shown in Fig. 1

with amplitude 2/Sff[Kxn,Kme&KxAKy . To illustrate the above, two sample
functions are generated using only the first term of Eq. 6.1z,
in Fig. 22, a sample function of f(1)(x,y) is plotted for an isotropic
power spesctral density function (see Fig. 3) such as
-(2)°

2
Sop(6) = o2 lf‘-; e © (6.2a)

K = Yki+x?
X

For the numerical example, the following data are used: ¢ =1, b =1, M= N =
64, K, = 27, From Fig, 2a, a sample function exhibits an isotropic pattern
where the variation pattern is independent of direction. However, if we use
only the first term in Eq. 6.1a for the simulation of f(1)(x,y), g direction-

al-dependent pattern as shown in Fig. 2b is observed, notwithstanding the use

of an isoctropic power spectral density function,

6.2 Ground Deformation Using Seismic Arrey Observations

The data used in this study consist of the original accelercgranms re-
corded on January 29, 1981 (Event 5) by a SMART-1 seismograph array (see Fig.
by instzlled at Lotung, Taiwan. In this study, a displacement time history
aglong the direction (¢ = 77° or N13°W) which is considersd to be approximately
the direction of the seismic source of this earthguake (Event 5), is computed
at each accslerogram station from two-component data (EW and NS)}. The purpose

of this study is to estimate the spatial variztion of seismic ground displace-
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ment for the analysis of underground pipelines. A more detailed description
of this study is given in a report by T. Harada and T. Oda (1981).

By interpreting the displacement time history u(x,y,t) (N13°W component)
at each station as sample functions of the uni-variate and spatially two-di-
mensional time-space stochastic process f(1)(x,y,t), and using Bq. 3.13&, a
spatial correlation Tunction Ruu(gx,gy) was computed from the records of ezll
the combinations of the 17 stations, C-00, I-03 -- I-12, M-03 -- M-09 and 0-04
-~ 0-09, specifying the standard stations as C-00, M-05 and 0~05. Since the
computed correlation functions approximately indicate quadrant symmetric be-
havior [Ruu(gx,iy) = Ruu(EX,“Ey)), all the correlation ccefficient data were
plotted by slim arrows as shown in Fig. 5, By judging the distribution of the
correlation coefficients, a simple anzlytical correlation function was assumed

such that

2

P lel- () - (29)°] s,

U|Jﬁ
>

= 2 _—
BuulEgrdy) - o2 [1 - 2f

g
"
g

where O = 1.2% (em), by, = 1.13% x 103 {m), b, = 3.012 x 103 {(m). The values

y
of Eg. 6.3 are also plotted with fat arrows In Fig. 5 indicating that the
analytical form in Eq. 6.3 is approximately velid. From the Wiener-Khintchine

relationship given by Egs. 7.15 and 1.16, the corresponding power spectral

density funection S (x_,x_) is obtained as
uwu Xy

Uau bex z ¥y ¥i?
= =Y s 2 - O . )
Suu(KX,Ky) B bbeKx exp[ ( 5 ) [ 5 ) Ky Ky 20 (6.5}

A sampie function of u(x,y) in the area of 22747.60 {m) x 19884.06 (m) is
shown in Fig. 6. In this example, the following data are used in Eq. 6.1: M=

- _3
= = = L - i = = i
N 64, KU 10/bX 8.84 x 10 “(rad/m}, x : 10/by 3.32 ¥ 10 (rad/m).
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It is observed from Fig. 6 that there is relatively rapid variation along Lhe
x—axis (N13°W, seismic source approximate direction) compared with the varia-
tion along the y axis. From the number of peaks (8) along the x—axis (22747.6
m} in Fig, 6, ;he apparent wave length along the x-axis is estimated to be
about 2.8 (km) (22747.618). Hence, the pattern in Fig. & indicates that =
vsingle wave with a wavelength of approximately 2.8 (km) propagates in the x-

direction. In faect, for Event data, the other study shows that a stirong

wn

portion of the records consist of a wave with frequency of approximalely 1
(Hz) and that it propagates in the x-direction with a speed of zbout 3 (km/=)
([B.A. Bolt, et al., 1982] indicating a wavelength of 3 (km) (3/1). This re-

sult is quite consistent with the variaiton pattern shown in Fig. 6.

7. ESTIMATION OF SPECTRAL DENSITY FUNCTION

7.1 Bi~-Variate, One-Dimensional Case

In this section we considerthe estimation of a spectral density function
from the finite-length rezl-valued records f(x) and g(x) with zero mean de-
fined in the range 0 & x § L.

The finite~range Fourier transform can be defined such that [Bandet and

Piersol, 1971),

L »

Fj(m,L) = [ s00e B ax (7.12)
0

FJ.("K,L) = Fj(K,L) j=1f, g (7.1b)

Assuming that £(x) and g(x) are sampled at N egually spaced points with dis-

tance Ax apart, then f{x)} and g(x) can be expressed as
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j(n) = j(nax) n=t,2,...

For arbitrary k, the discrete version of Eq. 7.1 is

N —iknA
F (k,L) = Ax ) j(n)e TNHeX

J Nn=1

N (7.2)

(7.3)

The usual selection of a discrete wave number for the computation of Fj(K,L)

is

27 2np
Kp=—E-E=AKp=m p=1,2,..

At these wave numbers, Eq. 2 can be written as

. 2emph
TETN

N
Fj{Kp,L) = ax 3 jinde D=1,2,..

n=1

=

(7.%)

. N (7.5)

On the other hand, for large L, the covariance function ij(g) may be esti-~

mated by

L=3

1 s for

Rjk(ﬁ} =T IO Jx+E)k(x)dx 0£¢
1 L

R (8) = ¢ la FOx+E YK (x)dx L g

Recalling the Wiener-Khintchine reiationships, the power spsctral density

function Sjk(K) may also be estimated by

L
B l_ : ~ikE |
sjk(z) = 5 IL ij(g)e dg

(7.7)

Equation 7.7 is also writen substituting Eq. 7.6 into Eq. 7.7 as
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i 0 L -ikg
Sjk(z) = 5T [iL {Ig J(x+E)k(x)dx]e dg

(7.8)
L L-t i

s ] serekx)axle *E qg
0 0

By changing the region of integration from (x,£) to (x,8) where g = g+x, df

= dB, the above integral can be expressed as

0 L L L L L
[ [ axde + [ | axdg = [ | dxas (7.9)
Lo 00 00

Hence, Eq. 7.8 becomes the accounting from Eq. 7.9 such that

. L , .
S, (k) = 5 | e ™ ag [ k(x)e™* ox (7.10)
0 0

Recalling Eq. 7.1, Eq. 7.10 can also be expresed as
sjk(n) = 5= Fj(x,L) . Fk(K,L) (7.11)

At the discrete wave number, Eq. 11 is expressed using Eqs. 7.4 and 7.5 as

feollows.

oy 1 N ~ ik_nAx 1 N ik _nhx
S, (k) = 5= [ﬁ o oitnye P ][ﬁ Tokmye P ] (7.12)
X P Y n=1 n=1
If j = k, Eg. T7.12 reduces tgo
1 1 N - iKDnﬁx 2
5500 = 5 IW n§1 jlnde ! (7.13)

Equations 7,12 and 7.13 are suitable for the estimation of the power spectral

density function viea finite Fourlier transforms using the Fast Fourier Trans-
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form technique.

T.2 Bi-Variate, Two-Dimensional Case

Using procedures similar to that for the bi-variate, one-dimensional case
described in the previous section, we describe the estimation of the power
spectral density function for the bi-variate, two-dimensionzl, real-valued

stochastic fields f(x,y) and g{x,y), defined in the finite regions 0 € x £ L

X
and 0 £ v £ L .
¥
The finite-range Fourier transform for the two-dimensional cass can be
defined such that
Lx Ly - i(KXX+Kny

Pk ok Lyl = IO IO Jtx,y)e dxdy (7.142)

Fj(-KX,—Ky,Lx,Ly) = Fj(Kx,Ky,LX,Ly) j=f,g (7.14p)
and, at disecrete wave numbers and points, Eq. 7.14 can bs expressed as

N M _ i[2;pn + 2;qm)

F.(KX VKL ,LX,L ) = axay Y 1 J(n,mde (7.75)

J 2] yq y n=1 m=1
where p = 1,2,...,N, 9 = 1,2,...,M and

LX Ly
Ax = T by = o ;7.16a)
_ 2%p _ _ 2Tp _ 27 _ _ 274
pr Ti T AP = Wax ° "yo L, bR = Yny (7.160)

For large Ly, Ly, the covarlance function Bjk(gx’gy) may &l1so be esti-

mated by
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biEx ByTEy

Rty ST JO IO 3Ox*E o y+E DK (x,y)dxdy (7.17a)

ey

for O s Ex g Lx and 0 £ £ =L

Yy Y
1 - Ly_gy . .
Rjk(gx’gy) =1L I I J(x+£x,yvﬁy)k(x,y)axdy (7.17b3
Xy Ex 0
T - L £ <0 d £ £ =L
or 3 and 0 gy y
L L
3 Xy .
Ro8nE) = o [ ] a0t yre Dk(x,y)axay (7.170)
iy —gx_gy
for - Lx s¢ £Q0and - L £ £y <0
1 I“xhgx Ly
Rjk(EX,Ey) = LxLy JO Ig j(x+Ex,y+Ey)k(x,y)dxdy (7.174d)
Y

for 0S¢ SL and-L SE <O

Recalling the Wiener-kKhintchine relationships, the power spectral density

function Sjk(zx,zy) may be estimated by

- i{k g +x £ )

L. L
- X, ¥
N XX Y7y .
S5 (ko) = Torye JL jL Ry (BgiEy e ag, 08, (7.18)
XY

Substituting Eq. 7.17 into Eq. 7.18 and taking into aceount the following re-

lationship similar to Eq. 7.9 with Bx = £X+x and By = gy + ¥,

Ly Ly L Ly L, L, L, L,
[ 7] | axayasas = [ [ axag [ [ avas
c 0 00 *Y oo X9 g y



¢ X , ¥ y oy

[ [ axa -+ f axdg } < {f [ ayag +f *f 6,46, ]

LE L -

X °X y oy

o o Dylby Ly Ly L,

=[] axayag ee o] [ dxdydE_dE
LML tELS YL o g0 ’
y "x ¥ X

by o LyEy Ly Ly Ly Log, L-E
s [~ axayeg ag + [ [ J dxdydg dt (7.19)

0L 0 g ¥ 0700 0 y

y y
Equation T7.18 is also expressed as
LoL
X ¥ 'i[K B _+k B )
S | BBy
S (i) L, IO JO 3(B,.B, ) B, 08,
(7.20)
Lx Ly i[KxX+K y]
x [T kx,y)e ¥ axay

Substitution of Eq. 7.14 into Eq. 7.20 yilelds

: ) 1
Sjk(Kx’Ky) EOEw

; Fj(Kx,Ky,Lx,Ly) . Fk(KX’Ky’Lx’Ly) (7.21)

Using Eqs. 7.15 and 7.16, Eq. 7.21 is expressed in terms of the discrete form

1 , ¥ —i[prnﬁX+qumAy]
S, ¥k 4k ) =—— [ 1 I Jn,me ]
Jk x5 Yo Ax AKY NM not me
N i{k_ nAx+c_ may) (7.22)
X [ﬁﬁ D) k(n,m)e ]
n=1 m=1

If j = k, Eg. T7.22 reduces to
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- i{mx nAx+»<y mby) |2

1 b Q

1 .
3, . = —— {— j(n,m)e
X Ak Ak NM
3 ¥q By

(7.23)
By utilizing Egs. 7.22 and 7.23 together with the FFT technique, the power
spectral density function Sjk(Kx,Ky) can be efficientiy estimated from a set
of discrete data j{n,m) egually spaced Ax = Lx/N’ Ay = Lny in the region
0sx s L.x and 0 £y £ L .

y

8. SUMMARY

& new version of the simulation equations for bi-variate two—dimensional
stochastic processes is described which 1s consistent with the spectiral repre-
sentation of homogeneous stochastic processes. The new version is given by
Egs. 2.17 and 2.19 for quadrant symmetry. Also, the charecterization of bi-
variate spatially two-dimensional time-space stochastic processes is presented
with a numerical example based on the analysis of seismie array records in
Taiwan (SMART-1)}. Finally, the essentials for estimating the power spectral
density function of bi-variate two-dimensional stochastice processes from a set
of measured data in finite regions are presented.

For simplicity in this study, we discuss bi-variate one-dimensional pro-
cesses, bi-variate two-dimensional processes and bi-variate speatiaily two-di-
mensional time-space proéesses. However, the results may be easily extended
to multi-variate multi-dimensional processes by following the same procedures

as those used in this study.
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Fig. 3-1 Discretization of x-y Plane
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Fig. 3-2 Characteristics of Homogeneous Two-Dimensional
. Stochastic Fields in Wave-Number Domain
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{a) Bi~Directional
Simulation

(b) Uni-Direttional
Simulation
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Sample Function of f(x,y) for Case 3
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