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GROUND DEFORMATION SPECTRA
T. Harada(I) and M. Shinozuka (II)

ABSTRACT

This paper presents a method of stochastiecally characterizing the
spatial variabilities of earthquake ground motion and its resulting
ground deformation for the purpose of the design and analysis of
buried underunderground 1ifeline atructures. The stochastlc char-
acterization i3 based on the theory of stochastie fields. The
method is then applied to the analysis of dense selsmic array data
observed in Lotung, Taiwan. The notion of a ground deformation
spectrum is also introduced.

INTRODUCTION

In oontrast to the earthquake-resistant designs of above-ground structures
where the inertial forces induced by ground acceleratlion are the main consider-
ation, the spatial variation of the ground motion is of primary importance for
buried lifeline structures such as pipelines and tunnels. Consistent with this
observation, the response-displacement method was devised [1] and is widely
used for the earthquake-resistant design of underground structures in Japan.
However, the state-of-the-art of quantifying the spatial variability of earth-
quake ground motion and the permanent ground deformation resulting therefrom
still leaves much to be desired.

In this context, presented herein is a method for characterizing the spa-
tial variability of earthquake ground motion for the purpose of design on the
basis of stochastiec process theory. The method is then applied to the dense
seismic array data observed in Lotung, Taiwan. The notion of a ground defor-
mation spectrum is also introduced.

BACKGROUND

This sectlon provides the fundamentals of the homogeneous time-space sto-
chastic process theory focussing on the analytical as well as physical signifi-
cance of the spatial correlation function. The fundamentals presented here are
those associated with a uni-variate and spatially one-dimensional tlme-space
stochastic process. However, an extension of the present work to problems in-
volving multi-variate and multi-dimensional time-space stochastic processes can
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be done. In fact, some work in this direction has been done at Miyazaki Univer-
ality [2] and at the Public Works Research Institute, Ministry of Construction,
Japan [3] by interpreting the fleld data as sample functions of bi-variate and -
spatially two-dimensional time-space stochastic processes.

" For a homogeneous time-space stochastic process f(x,t) with zero mean, the
time-space correlation function Q(£,1) may be defined as

Q(E,1) = E[f(x+E, t+1)f(x,t)] ()

where E[+] represents the expectation oberator. The quantities £ and t are the
separation distance and time lag, respectively. Transforming the time lag

1 into the frequency w by means of the Wiener-Khintchine transform yields the
temporal cross-spectral density function P(£,w) as a function of £;

P(E,u) = %— [ atg,0e 14, | (2)

1r—

By perfoﬁming an Inverse transformation, one can reclaim Q(E,t) as
=

g, 1) = [ Plg,w)el®du (3)
—® _
If the separation distance £ is zero, the cross-spectral density function re-
duces to the two-sided point speetral density function (at any point x):

P(0,u) = S,.(w) (1)

Normalization of the cross—spectrdl density function with respect to its

value at § = 0 gives the frequency-dependent spatial auto—correlation function
as follows,

_ P(g,w)
P(E’N) = Sff(w) (5)

The spatial auto-correlation function Re (£) can be defined as'Rff(E) =
Q(£,0) and hence, with the aid of Eqs. 3 and g,

- -] o
Ro(E) = Q(E,0) = I, P(E,u)du = [m Spplw)r(E,u)dy (6)
Thus, the spatial auto-correlation function is a weighted integral of the fre-
quency-dependent spatial auto-correlation function r(£,w) with the point spec-
tral density function S_,.(w) as the welght. If the time-space stochastic pro-

cess is assumed to be ergodic, the spatial auto-correlation function may be
estimated from the temporal average such that

T
Rep(£) = Q(£,0) = lim % | f(i)(x+i. t)f(i)(x,t)Qt (7a)
T+ °
or from the following spatial average
L .
Rep(8) = (5,0 = 1im - [ Wi, 600 (¢, 6)0x (70)
'I_.'N” ] .

in which f(i)(x,t) represents the i-th sample function of f{x,t). In prac-
tice, however, Eq. Tb cannot usually be used since the observations f( )(X.t)

are made at only a few discrete locations along the x-axis and therefore the
integration of Eq. Tb 1s not possible,



RELATIVE DISPLACEMENT AND GROUND STRAIN

For the seismic design of buried pipelines, the maxioum values of free-
field ground straing and relative dlsplacements between two points along the
horizontal (x-) axis along which the pipeline would be burled become points of
major interest. Hence, the analysia that follows primarily takes advantage of
such spatially related statistics as the spatial auto—correlation function
given by Egs. 6 and 7, without apecific use of frequency-dependent statistics
at this time. The purpose of this section is to derive the basic relation-
ships between the ground strains and relative ground displacements, on the
basis of the stochastic procesas theory.

~ Consider the spatial variation of a free-field ground displacement along
the x-axis. (Throughout the paper, the ground displacement and related quan-
tities are those associated with a free fleld.) The ground displacement
u(x,t) at a given time instant t is assumed to constitute a homogeneous, uni-
varlate and one-dimensional stochastic fleld with zero mean and variance g2,
Similarly, the ground straln e{x,t}) is assumed to be a homogeneous, unl-vari-
ate and one-dimensional stochastic field with zero mean and variance ¢%. For

brevity of notation, they are denoted by u(x) and =(x), dropping t in Ehe ar-
gument. . .

Consider first the relative displacemedt uD(x) between x and x+D:

up(x) = ulxsD) - u(x) (@)
Then, the auto-correlation function RuDuD(E) of uD(x) is given by

RUDUD(E) = E[UD(x+5)uD(x)] (9)
and can be shown to be

R, , (8) = [2R, (8) - R (8+D) - R (£-D)] (10)

DD
where Ruu(g) is the auto—-correlation function of u(x) with

Ryu(0) = Ua (1)

Clearly, the variance of Up is given by

UGD = RUDUD(O) - 2[r, (0) - R (D] (1)

Since Ruu(D) + 0 as D + o,

2 = = 2 -]
uuD 2Ruu(0) 20, as D » (13)
On the other hand, Ruu(D) can be expanded into the Taylor series around D = O:
Ruu(D) = Ruu(o) + R&u(O)D t 5T RGU(O)D *oeees . (14)

1 = " .
where Ruu(o) dRuu(E}/dE|E=O and similar definitions apply to RUU(O). ete

Due to the assumptlon that the free-fleld ground straln



u'(x) = ————dgixl'= e(x) ' . (15

is a homogeneous stochastic field with finite variance o}, or u;, one obtains
- = — RN 2, L2p2
2[R, (0) - R (D)] RN (0)D? = 02D as D + 0 (16)

Making use of the apparent wave length Lu of the process u(x),

Ly k)
i
one Introduces the "correlation distance® L; as
L¥ = — L, ‘ (18)
V2 x :
and
1
g, = - L¥%g . (19)
U/é‘UE.‘ . :
Then, it follows from Eqs., 12, 16 and 19 that
D )
auD = 2 Eﬁ 7 as D+ 0 (20)

In Eq. 17; 3 u(u:) and S (k) are the spectral density functions of u(x) and
e(x), respecglvely, and, in view of Eq. 15, SEE(K) is related to Suu(x) by

SEE(K) = KZSUU(K) - (21a)

Parenthetically, it is noted that the spectral density function of €' =
de(x)/dx is given by

Se's'(K) = K"Suu(x) (21b)

which will be used later in the analysis. As is well known, Su {x) Is in turn
related to Ruu(g) through the Wiener-Khintchine transform pair:

1 -1kE
Su(®) = 3= i, R, (E)e dE (22a)

® ikE
R () = [m 5, (k)e "de (22b)

In Tables | and 2, two families of R_(£) and S_ (k) which are useful in the
uu uu
present analysis are listed.

Summarizing Eqs. 12, 13 and 20, one has

ouD= /2 /ﬁuu(O) - Ruu(D) (23a)

= /2 %; 9, as D+ 90 (23b)
u



-2 o,

as D + =

The significance of the correlation distance L* i3 quite olear:
relation distance L* as defined for the purpose of ¥his atudy is such that,
when the relative dlstance D reaches the correlation distance L¥, the variance
of the relative displacement becomes 2¢® in accordance with Eq. 23b.
the same variance of the relative displgcement when u{x+D) and u{x) become
completely uncorrelated as D » » (see Eqs. 23a and 23c).

(23e)

The cor-

This is

Turning to the strain e(x), consider the local average eD(x) of e{x) de-

fined by

x+D

1

©w® -5 J
x

which can alao be written as

el(y)dy

1
p up(x)

It follows then that

eD(x) =

1
.0 == g
ED D uD
where ¢® is the variance of e {(x).
ED D
=—@m (0) - R_ (D)
ED D uu uu
= fz g =g
" LE u e
*
2,
D u D €

Plotting cuD/uu
tion of D/L%

shown in Fig. 1: From Eq. 23b,

%
log — =
%

. L

log %; 3 log(2)
u

and from Eq. 23c¢,

Also, from Eq. 26,

Recalling Eqs. 19 and 23 leads to

asb=+0

as D+ =

D s LX*
U

(24}

(25)

(26)

(27a)

(27b)

(272)

for the two limiting cases indicated in Eq. 23 as a func-

in a log-log scale, one obtains a diagram (heavy solid line) as

(28a)

(28b)



a

B . o
log — = log 7y * log[-u- a_: ) (29)
u u u D

Therefore, along a straight line making a 45° angle with the log (D/L¥*) axis
such as A in Fig. 1, the value of ¢ is constant and hence, the average
strain axis B can be constructed. D

. Four examples of the exact °u -~ D relationships (Eq. 23a) are plotted
. , D .

also in Fig. 1 (dashed curves) using the particular forms of the auto-corre-

lation function designated as Types 1 and 2, respectively, in Tables 1 and 2

for R (E)/a%. Observe that all these curves asymptotically approach the

solidiline 18 the ranges where D + 0 and D + =, and that in the intermediate

range of D, the solid line tends to represent the average trend of all the

dashed curves, i

GROUND DEFORMATION SPECTRUM

While the ¢, ~ D relationship shown in Fig. 1 i3 of definite analytiecal
interest, the re?ationship between max (up) and D will be more useful from the
design point of view, where max (up) indicates the maximum value of |up €x )]
over length L dlong the x-axis. (This notation for max (uD) will be used for
other quantities throughout this paper.) The length L is the representative
linear dimension of the area in which a network of pipelines of interest &x-
ist. Hence, the mathematical question here is: What is the absolute maximum
value of the free-field relative displacement uD(x) as a function of D in a
one-dimensional displacement field of u(x) over the range 0 s ¥ £ I, where the
auto-correlation function Ruu(E) 1s known?

To answer this question, consider the apparent wave length L”D of uD(x)

as
ouD Ruu(o) - Ruu(D)
L =27 — = 2% (30)
_uD Ty Rss(O) REE(D)
D
where 03, is the variance of ué(x) (duD(x)/dx) and REE(E) is the auto-correla-
o

tion function of e(x). Clearly, LUD is a function of the relative distance D.

However, in the two limiting cases where D + 0 and D + w, L can be shown to

Yp

take the following forms by the same reasoning as that used in derliving Eq.
21:

1 8, (x)dx
a2 i

=L, as D s (3t)

ki -
J Scrgrk)di



I_ S f(k)de e L
uu
a2 ——— = |, as D » o (32)
SEE(K)dK

where L, is the apparent wave length of u(x), and Le the apparent wave length
of e(x). 1In deriving Eq. 31, the existence of the variance of e'(x)} =

de(x)/dx has been assumed. Since L, 1s generally larger than Le’ L,. 1is ap-
proximately bounded by b .
L. s LuD s L& {(33)

By assuming the asymptotic largest value distribution function of the
first'type for max (up) and using its mode (most probable value) as the repre-
sentative maximum for max (u,), we define the peak factor PFA over the range
0SS %xsSL in the following form [4]

Max(u_) -_— . |
D” . pra = /21n[ib ¢31)
Yp ' Up -

Equation 34 is not valid unleas L >» LUD. For small values of L, however, the

g

mode of peak value distribution for the uD(x) process can be used as a con-
servative estimate of the representative maximum. To support this assertion,
consider for example the limit as L + 0. In this limit, max (uy) has the same
normal distribution as up(x) itself has. On the other hand, the peak distri-
bution function of up{(x) is located to the right of this normal distribution.
Therefore, the mode of the peak distribution function of uD(x) is larger than
the mode of the distribution function for max (up). This is a general trend
that also applies to the case in which L is finite but small. Since the
Rayleigh distribution function provides the most conservative mode, which is
equal to O, amongst the peak distribution functions having an identical

D
standard deviation, Ou , We assuma that the PFA is bounded by unity from beleow

D \

for small values of L. Equatioﬁ 34 implies that max (uy) over length L along
the x-axis can be obtained by multiplying a, Dy PFA (PEAK FACTOR). As men-

: D
tioned above, the apparent wave length L”D of uD(x) varies between LE and L,

(Eq. 33) depending on the relative distance D. Therefore, the PFA given by
Eq. 34 has the following approximate bounds:

v22n(2X) s PFA v22n(22) (35)
u £
From the design polnt of view, the upper bound PFA*
PFA* = /2un(s %E) (36)

u

ia of more interest, where § = L /L . However, in order to derive the upper
bound, one must estimate L . This %equires knowledge of the auto-correlation
function of the strain itselr which in turn requires the derivative of u(x).
Obvlously, such information will not be avallable in practice. Alternatively,



L 'can be obtained in terms of the second and fourth spectral moments of u(x)
(gee Eqs. 31 and 32). The spectral density function, however, can only be
constructed through the Wiener-Khintchine transform of the auto-correlation
funetion R (£) of u(x). Since at best R_{£) can be estimated only in ap-
proximation and since the spectral moments can be highly sensitive to the
analytical forms of the spectral density function 8, (k), the alternative
method of estimating L also suffers from some uncergainty in the abaence of a

robust data base. Henée, it 13 recommended here that the following value be
used for §. -

5 = 2.5 ' (37

The value of § in Eq. 37 was chosen from the following results, assocjiated

with particular forms of the auto-correlation function listed as Types 1 and 2
in Tables 1 and 2:

5§ = EE =/6  =2.5 _ for Type 1 in Table 1 (38a)
) = /572 - 1.6 for Type 2 in Table 1 (38b)

= /3 =1.7 ‘ for Type 1 in Table 2 (38¢c)

= /§L§ = 1.3 for Type 2 in Table 2 (38d)

Note that Eq. 36 gives, in approximation, the lower bound of PFA when § = 1.
In Fig. 2, the relationship between max (uD) and D, the ground deformation
gpectrum, is plotted. This plot is obtained as follows: the dashed curves in
Fig. 2 are obtained by multiplying the %, associated with the dashed curves

D
in Fig. 1 by a PFA (Eq. 34), and the solid lines in Fig. 2 by multiplying the
solid line in Fig. 1 by a PFA* with § = 1.0 and § = 2.5. Two sets of solid
lines are obtained considering L/Lu = 50 in one casé and L/L, = e/2 = 1.4 for
the other. Both the dashed curves and solid lines in Fig. 2 suggest that, for
D < L;, max (ED) may be used for max (g). '

The main thrust of this study lies in that (1) the absolute maximum rela-
tive ground displacement max (uD) can be read from the ground deformation
spectrum as construected in Fig. 2, and (2) the max (¢ )} obtained from the
spectrum can be used as max (e)}. The apparent wave léngth Ly and the repre-
sentative dimension L of the area in which the pipelines exist are the only
quantities needed for the construction of such a spectrum., For design pur-
poses, the maximum pipe strain can be estimated from max (g), which is the
maximum ground strain in a free field, if one multiplies it by a conversion
factor 8, for example, as defined by [5]. This approach by Shinozuka and
Koike has in principle been adopted in the Seismic Design Guidelines for Gas

Pipelines published by the Japan Gas Assoclation (1982; in Japanese and for
internal use only at this time).

ANALYSIS OF FIELD DATA

The preceding method is applied to the analysis of the dense seimic array
data observed in Lotung, Taiwan. From the viewpoint of stochastic procesas
theory, the fleld data are interepreted as a sample of a temporally and apa-



tially homogeneous. stochastic process confined in a finite domain of temporal
and spatial varlables. '

The data used in this analysis consist of the original accelerograms re-
corded on January 29, 1981 (Event 5) by the SMART-1 seismograph array in-
stalled at Lotung, Taiwan. These accelerograms have also been studied by oth-
ers [6-8]. 1In particular, Bolt and Loh, and Harada showed that the strong
portion of the accelerograms resulted from the wave propagating in the direc-
tion (x axis) of maximum 'variance with the angle ¢ = 64° ~ 86° (see Fig. 3).
in this study, however, a displacement time history along the average direc-

tion (¢ = 77° or N13°W) is computed at each accelerogram station from the two-
component data (EW and NS).

Using these N13°W components of the ground displacements obtained from the
accelerograms at sixteen stations (C00, I03 ~ I12, MO3 - MO9 and OO4 ~ 007}, the
spatial auto-correlation values were computed and plotted (solid circles) in
Fig. Y4 upon normalization. Figure U, however, involves only fifty-six rela-
tive distances appropriately chosen from all the possible combinations of the
sixteen stations, two at a time. In this computation, the time window T = 10

sec was used In such a way that the strong portion of the seismic wave at each
station was included in the window,

Similar computations were made for the same combinations of stations us-
ing the x directions with ¢ = 64° and 86° as the axes of projection. The're-
sults of these computations indicate that the correlation values change very
little while the relative distances change significantly. This fact is demon-
strated in Fig. 4 in terms of the range associated with each solid circle.

The upper and lower bounds of each range correspond to the relative distances

with respect to the directions of ¢ = 64° and 86° (not necessarily respective-
ly, however),

The solid curve in Fig. 4 is an approximation for the sample spatial au-
to-correlation behavior and has the analytieal form of Type 2 in Table 2,
2

Ryu(D) = 03{1 - 2[%) } expl- [%] ] (39)

with b = 1.131 km and ¢ _ = 1.3 cm. Using Eqs. 17 and 18, the apparent wave
length and.the correlation distance can be determined as L.u = 2.9 km and L* =
653 m. Since the representative length L of the pipeline network is taken
somewhat arbitrarily as L = 2.5 km in this study, the peak factor is obtained
as PFA* = 1.3 from Eq. 36 with § = 1.3 corresponding to Eq. 39 {(see Eq. 38d).

Making use of Eqs. 23a and 39 with the parameter values cited above and
‘utilizing PFA* = 1.3, one obtains a ground deformation spectrum in the form of
the solid curve in Fig. 5. In the same figure, the maximum relative ground
digplacements, assceclated with the same station pairs as used for the con-
struction of Fig. 4 and measured from the fleld data directly, are plotted.
The solid eirecles in Fig. 5 indicate the values of max (uD) when the average
azimuth direction is used as the axis of projection, while the bounds of the
corresponding ranges indicate max (up) when the directions of 4 = 64° and 86°
are _used as the axes. According to the solid curve in Fig. 5, max (e. ) = U x
107”2 in this example and {3 valid for D < L* = 653 m., As mentioned earller,
max (eD) can also be considered as max (e) ltself, The solld curve appears to



generally represent the relationship between max (uD) and b directly measured
from the field data, some scatter of data notwithstanding.

_CONCLUSIONS

This paper presents a method of stochastically characterizing the spatial
variabilities of free-field seismic ground motion and its resulting ground
deformation for the purpose of the design and analysis of buried underground
lifeline structures, The stochastic characterization is based on the theory
of stochastic fields,

Time-space observations of ground displacement in a two-dimensional spa-
tial domain are ldealized as spatially uni-variate and one-dimensional waves
propagating in the directions of maximum variance. On the basis of this
idealization, an expression for the variance of the relative ground displace-
_ ment at two spatial points Is established as a function of the separation dis-
tance measured along these directions.

The absolute maximum value of the relative displacement in the spatial
area of interest is then evaluated by multiplying the standard deviation of
the relative displagement by a peak factor which depends on the representative
linear dimension of the area as well as the apparent wave lengths of the

ground displacement. This leads to the notion of a ground deformation spec-
trum. '

Use of the ground deformation spectrum makes it possible that (1) the
absolute maximum relative ground displacement be read from it and (2) the
maximum average ground strain obtained from the spectrum c¢an be used as the
maximum ground strain itself. The apparent wave length of the ground dis-
placement and the representative lineéar dimension of the area in which the
pipelines exist are the only quantities needed for the construction of such a
spectrum. For design purposes, the maximum pipe strain can be estimated from

the maximum ground strain thus obtained, 1f one multiplies it by an appropri-
ate conversion factor.
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