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1. INTRGDUCTION

The following are well known in the second-order analysis of stochastic
process theory: (1) a homogeneous stochastic process is usually characterized
Dy its mean value and correlation function, (2) the correlation function rep-
resents the variance and correlztion structure of the process, (3) the corre-
lation function is releted to the power spectrzl density function by means of
the Wiener-Knintchine transform pair, and (4) if the process is Gaussian, then
all its characteristies are known only from its mean value and correlation
function or power spectral density function., Therefore, when stochastic pro-
cess theory is applied to the analysis of observed field data, & set of these
observations is interpreted as a realization of & homogeneous stochastic pro-
cess, Then, the mean vaiue and correlation funciion or power spectral density

funciion are ususlly estimated following routes 1 and 2 shown schematically in
N

o

ig. 1. Finally the resulting correlation function and power spectral density
function are in general summarized in analytical terms,

In the zbove procedures usually encountered in practical field data snal-
yses, the last step of modeling is, of course, based on not onlythe observed
data, but alsc physical understanding of the phenomena and engineering Judg-
ment, Hence, the modeling task cannot be successfully achieved without under-
standing the phenomena indicated by the observed data and without taking into
eccount the sceuracy reguired for analyses,

In addition to the correlation function, however, if simple statistics

PN

efined that are z2ble Lo represent the corrsla-
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tion siructure of the stochastisc processes and 2150 ¢an be directly estimated
from a set of observed field data without the corrslztion function or the PoOW-

er spectral density function, these

th

tatisties for correlation could provids
quite useful Information for capturing the essential phenomena indicated by
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the observed data and eventually in the modeling of its stochastic process,
Consequently, it is asserted that three statistics (the mean, variance and
correlation study) could be used as the fundamental parameters to approximete-
1y characterize stochastic processes. 1In fact, as briefly described in Sec-
tion 1.1, Iinstead of the correlation function, the correlation scales sum-
maerized in Tzble 1 have been successfully used as measures of the correlzstion
tructure of stochastic processes in studies of the furbulence, signal anai-
ysis and stochastic response of mechanical systems to dynamie loading. How-
ever, since these correlation scaless are defined through ths correlation fune-

tion, they cannot be svaluated befors knowing the correlation funetion. From

n

4

viewpoint of the statistica

b

a

cr

12lysis of stochastic procsss dzbta, it is

iesirble Lo estimate the correlation scale directily from observed data without

[&]

going through the correlation funection. Hence the definitions for the corre-
lation scales indicated in Table 1 are quite useless from the point of view of
the statistical analysis of stochastic process data.

In this study, two new definitions for the correlation studies A and C in
Tzble 1 are discussed which are suitable for the statistical analysis of ob-
served datea in the sense described above, Hence, the problem dealt with in

this study i

n

to develop & practicel procedure for estimating correlation

b

cales di

w

"3

ectly from observed date iwthout golng through the correlation funec—
tion (route 4 in Fig. 1). To do this, the variance behavior of an averaging
process previcusly studied by Panchev (1871), Bendat and Pierscl (1977) and

Vanmarcke (1983) is analyzed in a systematic way. (The procedure used in this

study is especially similar to that used by Vanmarcke.) Howsver, the results
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and their interpretation are quite different from those of previous studies,
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and the two different definition for correlation scales are reinterpretsd in =z

b

consistent way from the viewpolint of the statistical anaiysis of stochastic



process data, Consequently, a practical procedure utilizing 2 graphical meth-
od as ogcasion demands, is presented to estimate the correlation studies di-
rectly from observed data without using the correlation function., The pro-
cedure for one-dimensional stochastic process data is also extended to the
two-dimensionsgl case and the significance of the correlation scales for ifwo~

dimensional stochastic processes is briefly discussed using numerically gen—

erated two-dimensional stochastlice fields. In the final chapter, some new ap-

¢

plication examples of correlation scales are briefly presented.

7.7 Brief Historiczl Note on Corrslziion Scales

aple 1 summarizes the definitions of corrslaiion scales in the litera-
ture avalliable. In the study of turbulence, G.I, Taylor {1935} first proposed
a measure of the correlation scale to obtain low variance estimates of the
meen value of fluctuating velocities. The ratio of a finite sampling interval
to the correlation (A in Table 1) is used as the equivalent number of indepesn-

dent observaticons from stochastic process data., G.K. Batchelor (1953), V.I

Lo

-

Tatarski (1961), and A.S8. Monin and A.M, Yaglam (1965) alsc used the sams

measure propesed by G.I. Taylor

——

192

—t

¥ i

o
<F

helr studies of isctropic turbu-
lerice. In the study of random signal analysis (8. Panchev, 1971, J.8. Bsndat
and £,G., Pilersol, 1971), the correlation scale & in Table 1 was also ussd for
the condition of ergodicity with respect to the mean value. R.L. Stratono-
viteh (1967) used the other definition {(B) as indicated in Table 1 in the dis-
cussion of the condition of ergodicity with respect to the mean valus by con-
sidering the averaging process. Correlation scale C in Table 1 was proposed
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of turbulence (V.I, Tatarski 1961, 4.8. Monin and
AM. Yaglom 1863, J.L. Lumley, 1970). In the study of stochastie respons of

mechanical systems to dynamice loading (Y-K. Lin et al, 1979), the other defi-
]
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nition of correlation scale D ir Table 1 was used. This correlation scale is

proposed in such a way that if the correlation scale (time) of a dynemic load-
gmaller . . )

ing is much larger than the relizxation time of the mechanical system, then the

response can be approximated by a Markov process. Thus, many convenient

mathematical properties related f{o Markev processes can be used to solve the

system response to dynamic loading (R,L. Stratonovitch, 1967; Y-K. Lin,

—
O
-1
>

7,

W-F. Wu, 198%).

Recently, Vanmarcke {1983) reinterpreted the correlaticn scale in & in
able 1 {(scale of fluctuation) from the viewpoint of the analysis of the vari-
gveraging processes in 2z manner similar to the discussion of Siraztono-

viteh {1963} an

2

S. Pancheve (1971), and rpesented many applications in eivil

1

roblems. Harada and Shinozuka (1985) recently

i

Jote

and mechanical engineerin

"y
o

proposed correlation scale C in Table 1 in their analysis of the spatial vari-
ztions of seismic ground motions by considering the variance of difference
processes,

In ¢ceoneclusion, previous definitions for corelation scalss were all based
on the correlation function or the power spectrzl density function and tend to
be vague in why they are defined as shown in Table 1, except the studies of
Vanmarcke, and Harada and Shinozukz, Thus, to obtain the eorrelztion scele,

the correlation funciton or the power spectral density function has to be

ct

iven fi
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st. This kind of definition is no! useful rom the viewpoint of the
statistiezl gnalysis of observed data because it is desirable to estimate Lhe

correlation scale directly from the observed data without using the correla-

tion function.



2. VARIANCE OF AVERAGING PROCESS AND DIFFERENCE PROCESS

Since any continuous parameter homogeneous stochastic process with mean m
and variance o%f can be expressed as the sum of its mean m and homogeneous

stochastic process F{x) with zero mean and variance céf, we consider a homo—

geneous stochastic process f(x) with zero mean and variance g2

in th 1y~
of in the analy

sis that follows,
For & homogeneous stochastic process f(x), a family of the averaging pro-

0gss ;D{x) may be defined such that

oD
2

© ‘—-l. 't
T =5 | _fney (2.1)
2
Introducing the following indefinite integral F{x} of f{x)

F(x) = iz fly)dy or §%§£i = f{x) (2.2)
Eguation 1 1s also written as

£,00) = 3 P () (2.3)
where

P00 = F(xe3) - £(x-2) (2.1)

The function Fp{x) is the finite difference process of F(x). In Egs. 1 and 3,
the averaging process fp(x) and difference process Fo{x) are always homogene-

ous since the original process f(x) is homogeneous, However, the indefinite

1y

integrel process F{x) is not azlways homogeneous. The condition for the homo-

[13]
oo

genelity of F(x) is very closely related {o the behavior of the power specireal
density funetion S_..(k} of f(x) at origin « = Q. If F(x) is homogsneous, the
il

power spectral density function S__{x)} of F(x) is wsll known to be expressad

due to Eq. 2 as



SFF(K) = (2.5)

As is also well known, Sff(x) is in turn related to the correlation funetion

Rff(g) through the Wiener-Khintchine transform pair:

Spp(k) = 5= | Rai(Ede” F g (2.62)
Ropl) = [ 8. 000e™ ac (2.60)

Lccounting for the symmetry of Rff(g) with respect to the origin (Rff(g) =

Rff{* £)}, the Wiener-Khintchine transform pair is also given as

It

Sff(K) %; im Rff(g) cos kEdg ‘ (2.6c)

o
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i

f_,(r:) eos kEdk (2.6d)

Using the asymptotic expansion of cos ki, Sff(K) can be expressed as

S ()"j—jwﬂ ")[E (—‘])n.gﬁgﬁ]d
et T ) Teeth L ooy 48
‘;‘F_f_ e (8268 - o 57 o f E*R.(E)AE + v (2.7)

Then, from Eqs. 2.5 and 2,7, S ,(K) is z2lso expressed as

1 1 ¢ i1
- P U P — o — 25 R
Spp(<) = 3 {z Repl£)dE = =2 5 Im SRpp(£)dE + (2.8)
_ 1 . e mimentan ot
Therefore, If 8,.(0) = o i Rff(g)cg = 0, then SFF(K} is singular at the

o

origin. This means that the variance of F{x) becomes infinity znd the process
F{x) is no longer homogensous,

It should be lnoted again that the difference process FD(X) of F(x) given
by Eg. 2.% is always homogeneous even in the case where the procsss F(x) is

ron-homogeneous because the averaging process Ip(y) is always homogeneous (see

~
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Eg. 2.1). More rigorous discussion concerning the homogeneity of the integral
and difference processes can bell seen in the following (Cramer and Leadbetter,
1967; Doob, 1953; and Yaglom, 1962, 1973).

Turning to the variance 05 of the averaging process fD(X), we first con-
sider the power speciral density function Sf {k) of fD(x). Sf (k) is given as

D D
foillows:

kD
S..(x) (2.9)

Equation 2.9 is derived from the following general well-known equations in
filtering theory (for example, Papoulis 198&):

o =]

£ (%) = L £(uwin(x~u)du = L £(x-udh(u)du (2.102)

where h(u) is the impulse response function of a system, and the power spec-
tral density function of the response f{x) to the input f{x) is given by
_ 2 . -
Sfjcz) = |Ble) |28, . (x) (2.10%)
1

where H(kx) is the transfer function of the system which is related to nlk)

such that

iku

Hk) = j n{ule du (2.10¢)

ml-—-

Since the averaging process fD(x) as defined in Eg. 2.1 is identiczl with Ec.

2.10a having

hiu)
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otherwise

5

and hence



=~ {(2.12)

Substitution of Eq. 2.12 into Eq. 2.10b yields Ea. 2.9.

The variance cg of fp(x) is given following its definition such that

o = B[r2(0] = R (0) = [ 5. () (2.13)

b e D

whnere E[-] is the expectation operator and R, (£) is the correlation function
L
D
of fy(x). Then, substitution of Eq. 2.9 into Eq. 2.13 gives the variance 55
in terms of the power spectral density funciion Sff(x) of £{x} as follows:

Eguation 2.14 is also rewritien using the relationship between the basic spec-

tral window and the log window as follows:

. KD
sSin — 2 -
—=1 -5 (- Ll)oos e (2.15)

b

[

mlx
[

Then, from Egs. 2.6d, 2.1% and 2.15,

o

of = % [ {1 - l%l)ﬁpf(a)da (2.18)

—_C

If F{x) is homogeneous, Eg. 2.14 is alsc expressed in terms of the correlztion

funetion Rp

F(E_,) of the indefinite integral procsss F{x) zs follows:

® sin EE 2
0% - im [ 5 1S, (x)ax
2
A PSS .
- (% 2f ‘;2 51n2[§gjom



z 1 - D
= (%)aiw sFF(K){————§9§5“}dK
- %; [Rep(0) = Roo(D)] (2.17)

Summarizing Egs. 2.14, 2.16 and 2,17, one has

., KD
2 — x
o5 = | [ 5 ] S.o(x)dx (2.18)
2
RO | 4k
-3 {m (1 = )nff(a)da (2.19)

and, when S,0(0) = 0, and hence the indelfinite integral process F{x) is homo-

geneocus,

2: = I } .2
0 = 5= [EFF(O) Rop(D ] (2.20)

-3

[(V]
el

he variznee 05 of the difference process Fy(x) is related to 55 due to Eq.

2.3 as follows:
c§ = Dzag {2.21)

The relationships betwesn the processes f(x), fa(x), F{x) and Fp(x) may also

be summarized schematically as shown in Fig., t. 1In the case where the power

S

spectiral density function at the origin S,-(0) # 0, the indefinite integral
process F(x} of f{x) becomes nonhomogeneous, but otherwise F{x), Fy(x) and

fp{x) are all homogeneouis stochastic processes with variances ch, sg and
B

5;, respectively. Equations 2.18-2,21 and the summary shown schematically in

ot

Fig. 1 play a fundamental role in ths new interpretation of the definition of

=

the correlation scalie which i1s capable of being estimated directly from the

observation dates without recourse to the correlation function,



3. DEFINITION AND SIGNIFICENCE OF CORRELATION SCALE

We consider in this chapter the behavior of the variance cé of fp(x) in

the two limiting cases where D + 0 and D + =, using Egs. 2.18-2.21. And then,
we introduce new definitions for the correlation scales,

In the Tirst case where D becomes zero, using Eq. 2.18 together with ths

XDy _ kD

relationship of sin(2 ;=3 for b + 0, we can easily show that
2 Vb = A2 r
5 im Sff(a)am Ioe gas D > 0 (3.1)

[
b
[€2]
h
-
p
<
S
I

= G, then the integral process F{x} is homogeneous., Hence we con-

)]
ft
[a N
[
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1
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2.20. The correlaticn function Rop(D) can be expanded into a Taylor

series around D = G:

Y 2 R P vl +
R__ (D) KFF(O) ?FF(O)D

FF RY {(QID2Z + sses (3.2}

1
21 VFF

1 o~ 1 = A ?
whers RFF(O) dR

and similer definitions apply to REF(O), egtc.

Due to the assumption that the original process f(x) is homogeneous, we ohtain

2[RFF(0) - RFF(D)] = = R2.(0)D* = ¢?D? as D+ 0 (3.3)

of the process F{X),

oop Koo (0) [ sppterac
= 27 — = S i o reon
L. = 27 < - 2m/= = 03 2/ ~— {(3.4)
£f FF .
] Sff(K)dK
—
we introduce the correlation scale L% as
1 _
L% = Lo (3.5
i} J2or t

and

...‘i O_.



Then, it follows from Egs. 2.2%, 3.3 and 2.6, ihat

V2
2 _ .2 o z . -
63 = oZq [LchFF as D > 0 when 8.,(0) = 0 (3.7)

In the second case where D + =, the second term of the integral in Eq.
2.19 approaches zero (for proof, see, for example, Y-K, Lin, 1967, pp. 57-38).

Thus, using Bg. 2.1%, the variance GS is zpproximately given as

6% - ¢ [ Ro(E)dE as D + @ (3.8)

BEquation 2.8 is alsc derived using Eq. 2.18 together with the fact fhat the
only values assoclated with the wave number k near zero contribute to the in-

tegral in Eq. 2,18 for D » « as Follows:

2 sin uy. 2U
9% =D [m [“"ﬁ""] Sff(ﬁ_Jdu
<25 _(o)] [EinYag,
5 Trett) LT
2T
- T s (o)
= & [ R.a(8)et (3.9)

In obtaining the last two elemsnts in Eq. 3.9, the Wiener—-Khintchine relation-

ship given by Eq. 2.6 and the following definite integral value are used:

[ [EES—E]Bdu - (3.10)

-

;

When SfF(O) = 0 {(F{x) is homogsneous), the variance 05 for D » = can be

given, using Eq. 2.20 together with Rep(D) + 0 258 D » =, such that
E Q g FF

¥

2 2
95 = 57 Bepll) = 57 0% (3.11)



Also using Eq. 3.6, Eg. 3.11 can be expressed such that

o]

2
b

L
F 2
(B”] Otr

(3.12)

Equations 3.8 and 3.9 are identical with those used in the condition of

ergodicity with respect to the mean value where the varizance ¢2 is interpreted
y 5 i

2s the

length D {Panchev, 1971;

and 3.9 are interpreted as folliows:

mean sgquare error of the estimate mean value of F{x) cver a f

Bendat and Persol, 1371).

In this gase,

Egs. 3.8

When the integrals in Egs. 3.8 and 3.0

are finite-valued, the mean square error of the estimated mean of fix) ap-

proaches zero as D + @, providing that the estimate is a "consistent!

of the

Summarizing Egs., 2.

0 {Case I):

L¥

where

mean

vyl

is the correlation scals

-]

ue of F(x) {ssze Bection 5.2

).

18, 2.19, 2,20, 3.1, 3.7, 3.11 and 3.1
o Sin";—?‘z 1 = _LE_L
im [ 5 ] Seplr)ek = 5 [m(1 - 4= )Rff(g)ag
2
Wte
%
5 O

defined as

estimate

2, when Ssp(0) #

(3.13a)
as D » 0 (3.130)
as D + = {3.13¢)

(3.1

when S0p(0) = 0, and then F(x) is a homogenecus process with variance aé {Case

I1):

Tiw

It

V2
U;F = (Egjgg as D s g

{3.152)

(3.15D)



;? as D+ = {(3.15a)

where L; is also the correlation scale defined by Eg, 3.5.

Eithough the correlation seczales LE and L¥ defined by Egs. 3.5 and 3.4
possess the same forms as A and C in Table 1, which are defined by previous
investigators, the significance of the correlation scales defined in this
study is quite c¢lear: The correlation scale L; defined by Eg. X.5 is such
tnat when the relative distance D reaches the distance of the correlation
sgale L;, the variance Gg becomas EG;F/D2 according to EqQ. 3.15b, This is the
same variance of cg when F(x+D) and F(x) become completely uncorrelated as D
+ = (see Egs. 3.15a and 3.15¢). Also, for the correlation scale L¥* defined by
Eq. 3.4, a similar consideration can be made using Egq. 3.13 as Follows: When
the averaging distance D reaches the distance of the correlation scale L¥, tne
variance of the averaging process becomes ¢* in accordance with Eg. 3.13c.
This is the same variance of the averaging process ehn the original process
f(x) may be considered to be & psrfectly correlated process, i.e., Ro.(E) =

L
G?f for D+ 0 (see Eg. 2.132 and 3.13b).

The definitions of the correlation scales L¥ and L§ are glso interpreted
in toéerms of the wave number x as follows: Since the wave number x is relzted
to the wave length L such that ¢ = 2%/L, we may define the speciral scales x¥
and m? corresponding to the correlation scales (distances) L¥ and L%, respec-

tively such that

, 2 . 21 -
t# = % and x? = Eé {3.1%)
F

Then, Eq. 3.16 can be written using Bgs. 3.4, 3.5 and 3.14 togsther with the

3
Wiener-Khintchine relationship given by Egq. 2.6 as follows,

[++}

k¥ = 1 1

FY (3-’%7)
| 8 .(x)dx
Sff((}) o l(’(}




and

[ spn(kdax
-_—n -b

K; = 2 HVL;;————————— = V2 Kp (3.18)
[m SFF(K)GK

where Kp is the apparent wave number, The significance of the speciral scalas

defined by Egs. 3.16 and 3.17 is illustrated in Fig, 1. It may be observed

from Fig, 1 that the spectral scale represents a large wave number above which

the power speciral density function may be consi

[

ered to be zero,
As demonstrated in the numerical example, definitions of the
scales given by Eqgs. 3.13~3.15 are also useful for estimating the
scale from the observed data sinece the variances o;f and Gé or G;F and ¢

be easily calculated by following their definiticns from the observed data.



4, GRAPHICAL REPRESENTATION

A grpahical representation of Egs. 3.13-3.15 as shown in Fig. 1 may be
mere useful for estimating the correlation scale L¥ or L; from a set of ob-
served data., Figure 1 1ls constructed in the following way.

Plotting OS/U for the two limiting cases indicated in Eqgs. 3.13 and 3.15

a5 a function of B/L¥ or D/L; in log-icg scale, one can obtain a diagram

(hezvy solid lines) as shown in Fig., 1: From Eg. 3.13b,

5 1
iog = — log{1} D g L¥ (4.1)
S 2
il
and from Eq. 3.13c¢c
g
D 1. D
'ﬁog --—-----U = - -5 1o0g oy D > L* (&.2)
£f n
hlso, from the relationship between Ons Op and D which is given by Ea. 2,21,
D
G
0 F
D D D
log — = - log — + log —% (4.3)
Tee L Ol

where U; is the variance of the difference process Fn(x) which can be easily

log —— = & log (1) D g Lx (u. 1)
g 2 F
ff

and from Eg. 3.%15¢,

)

3 = - il .

log - log 73 D> L% (4.5)
e I

Also from Egs. 3.8 andé 3,27,

LE
D O I (4.6)
log — = log — = = 10g iy + 108 e
rr 02 “F 62’2

Due to Eqs. 3.18 and 3.21, zlong a straight line making a 45° angle with the



log D/L* or log D/LX axis such as A in Fig, 1, the value of ¢

F is constant

F

and hence, the ¢ axis B can be consiructed.

Fp

L set of eight samples of the exact 0D~D relationships {Egs. 3.13a and
3.152) are also plotted in Fig. 1 (dashed curves) using the particular forms
of the correlation function for the original process f(x) which are designated

as Types 2 and 3, respectively in Tables 1 and 2 for Cass 11, and as Ty

gl

e3 i,

§ouka

-
o]

(&N

2, 5 an n Tacle 3 for Case I, It can be observed from Fig., 1 that all

oF

in

these curves asymptotically approach the sclid lines in the ranges where D =+ 0
and D » =, and that in the intermediate range of D, the solid lines tend Lo
represent the average or upper-bound trend of all the dashed curves, Using a
dizgram as shown in Fig., 1, the correlztion sezls L¥ op L; can be defermined
from the length D at the intersection of solid lines in Fig. 1 if such a dia-
gram is constructed as & function of D using the variances estimated from ob-
served data (sees Section 5),

it should be noted here that 21l the pzirs of correlation Functions and
power speciral density functions indicatsd in Tables 1, 2 and 3 except Types 1

and 2 in Table 3 have at least first-order derivative processes. Hence they

&

are used as the correlation function or power speciral density function of the

=

nomogeneous process not only F(x) but also £{x). However, Types 1 and 2 in

able 3 are used only for f{x). Indeed, for Types 1 and 2 in Table 3, oniy
one correlation scale L¥ of f(x) ca be defined as shown in Table &, However,

for each of the other correlation functions, we can define the two correlation

scales L¥ and L% depending on the interpretation of thes process (f(x) or

F{x}). The correiation scale LE in parentheses in Table 4 zre obtained by in-

o3

terpreting the correlation functions in Table Y as those of the integral pro-

or the correlation functions of Types 2-6 in Tables 1 and 2 (Case II),

_..16_.



the definition given by Eq. 3.14 leads to a zero correlation scale (L¥ = 0) as
indicated in Table 4. Also, for correlation functions of Types 1 and 2 in
Table 3 (Case I), the definition given by Eg. 3.5 leads to a zero correlation
scale (L§ = 0). As shown in this example (Table %), we must classify the
original process f{x} into two czses (Case I and Case II) to obtzin a physi-
celly meaningful correlation scale for the stochastic process f£{x). In this
sense, a real phenomenon may de modeled by the Case I process, the Case II
process or the combined process of the Case I process and Case II process. By
zppropriztely combining the Case I process and Case II process, we can con—

struct z more sophisticated homogeneous stochastic progess model which may be

able to more accurately represent real phenomena. However, in this study, we
deal with only the fundamental characteristios of the Case T process and thes

Case 11 process because they are fundamentals of homogeneous stochastie pro-
cesses, and for a more sophisticated model, a deep understanding of not only
measured data but also both the physical mechanisy indicated by thes data and
the accuracy reguired for modeling is essential, and hence, this issue is be-

yond the scope of this study.



5. PRACTICAL ESTIMATION PROCEDURE AND NUMERICAL EXAMPLES

In this section, we describe a practical procedurs for estimating the
correlation scale (s) from {inite-length observed data with numerical ex—
amples. Next we exaine briefly the stztistical properties of the estimator of

the correlation scale based on this procedure.

5.1 Practical Estimzstion Procedure

The procedure is as follows

—~
L]
4t
@
13
pote

e ]
—

~—

(1) From a set of_observed datz, estimate the mean value m and
the variance o2

:
£e?

P
ny
s

Obtain 2 set of averaging process datz

ror several
large values of D and calculzate the va g

E from them;
(3) Plot a set of averaging deviztion ratios oD/aof on a log-
P L
log scaled greph as a function of D;

)
es

1

f the estimated deviation ratio ¢ /¢ follows straight

ine I, determine the correlation Zczlé L¥ from the length
D of the intersection between horizontal line H and straight
line I. 1If the ratio UD/Gop foliows straight line II, de-
termine the corrslation scale L% the length D of the inter-
section between horizontal line H and straight line II.

(4) 1
1

w
(3%
-
£
o3
(1]
“3
for.
(@]
m
Jout
[
k]
m
=
L]
]_.l
[£1)
[#2]

The numerical examples in this study are based on digitally simulated

stochastic data using the followig equation (Shinozuka and Yang, 1972):

=

f . -
fix) =+v2 § VSff(Kn}ﬁK COSiK X * ¢n] (5.1

1

vwhers @ﬂ is the stochastic phase angle uniformly distributed between O and 2

i,

Lk = KU/N, K_ = nAx and x_ = upper cut-off wave number,

-3

For numerical examples, the following datz are used: ype 1 in Table 2
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- it = . = na 2 = i
for Sff(k} with b 31.636 (m); K4 1 {rad/m) and Opp = 1 {(m}., By using

these data, & sample function of f{x) is shown for the distance of 2,000 (m)
in Fig. 2. For D = 200, 300, 400, 500 (m), the variances cg are calculated

and the resulting deviation ratios GD/OPf are plotted in Fig. 3. From Fig. 3,

L¥ is estimated to be about 56 (m). In fact, in this numerical example, Lhe

true L¥ = Y7 b = 56.07 (m).

5.3 Statistical fssessments of Correslation Scale Estimates

To establish the quality of the estimator, we will use two principal fac-

tors in this study: T"Unbiased" and "consistent," that is,

Ef¢] = ¢ unhiased {(5.2)
and

Iim E[(¢ - ¢)*] =0 consistent (5.3)

vhere ¢ 1s an estimator for the parameter ¢, The analysis procsdures that

follow are basically based on those by J.S. Bendat and 4.G. Piersol (1971).

5.3.7 Mean Values

Consider the sample recerd f(x) from a2 homogeneous (ergodic) stochastic

préocess over & finite length Dg. The mean value can be estimated by

- “ DO -
Beg [ Fooum
00

o
19|
=

~

The true mean value is

4]
—~
»~
e
| )
8]
L
——

Then, the expescted value of m is

.—1 9._



0]
Blnl = = [ E(F(x)lax = m
0 0

Hence, m is an unblased estimate of m in accordance with Eg.

The variance of m can be expressed as

Varim] = E[(m - m)?]

Introducing the covariance function u“‘{E) of f{x) as

Cz3(8) = EL{f(x+g) - a}{f(x) - m}]

Rzz(£) = m?
11
where Ryz(E) is the correlation function of ©{x)
i1

Rpp(E) = BIF(x+£)F (1))

{5.6)

5.2.

(5.7)

(5.8)

{5.9)

then, the variance of m is written in terms of the covariance funetion as fol-

[
(o]
=,
]

var(sl = gz [ f  {s[FeFe)] - ntler, ar,
o 2
80 B0
1 - ;
s J I captapan o,
B 0
0
B lel
= 1 - 2llce~(8)de
DO n bo '
Similar to Eq. 3.8, Egq. 5,10 is given for DO + @ by
1
Varim] = Ba im Cs 77 ¢ {£)dE

timate of the mean value m,

5.2.2 Variances

m] approaches zero as D, + =, indicating that m is
L)
,

{5.10}

Since the mean value m can be estimated unbiasedly and consistently by

.-20.—



Eq. 5.4, in this section we consider the zero mean process f(x) with variance

a;f. The variance of f(x)may be estimated by
g2, = — f2(x)dx (5.12)
£ DO 0

The expected value of the estimats ¢® is

E[o?] = L j Efr2(x)ldx = ok

-
—~
LR
»
—_
Lad
—

Hence Géf is zn unbiased estimate of sif in accordsnce with Eq. 5.2,

The variance of the estimate is given by

Var{o®] = E[{0? - ¢2}%]
2. D
‘i - P n% g 4 - -
-5 fo JG (e{r2(g 0r2(e,)] - ob o, ag, (5.14)

Assume now that f(x) is a Gaussian stochastic process. Then the expescted val-

us in Eq. 5.14 can be expressed in terms of second-order statistics such as
[ 2 % - 2z (r J— P
Blrz(e 012 (6] = 2r2.{g,-5,) + o}, (5.15)

Substitution of Eq. 5.15 into Eg. 5.14 yields

ﬁO DO
rTa 2 2
Verlo®) = =7 j J [Rgf{i1"€2)061052
0 B a
2 0 £
N [ G- S=L)R2 (2)dE (5.16)

[
1
F
o

For large Dy, where |g] << Dy, the variance becomes

[+

; - - 2 e
var[o2.] = = [ ®2.(f)a: (5.17)
i D M fi 3
O =&
Thus the U;f estimated by Eg. 5.12 is a consistent estimate of g%f becauss
Var{c;f} aporoaches zero as DG + = assuming a finite value of the integrzl.



5.,3.3 Estimation of Correlation Scales

For the reason that the mean value and variance estimztors m and o2 of
F{x) are unbiased and consistent estimates of f{x) as shown in prior sections,
we restrict our attention here to processes with zero mean and unit variance.

Then the correlation scales L¥ and L; may be estimated from Egs. 3.13¢ and

3.15¢ as
L¥ = D o? (5.18)
and
i‘; =D ED {5.19)
where BS is an variance estimate of the averaging process fD(x} of f(x). It
mzy bs estimated by
D
N 1 D0 2
2 f2
R e B L
¢ D D
. 02
-5 | rz(oax (5.20)
c 0
In £qgs. 5.18-5,20, L¥ or L; << D << D0 is assumed.
The eipected vailue of 55 is
~ 1 rDO -
E[02] = — | E[f2(x)]ax = o2 (5.21)
D DO ‘O D D

where og is the true variance of fy(x). Then, the expectations of L* and LE

E[I*¥] = D 2{55] = Doj = L¥ (5.22a)
and
g{i;} = D E[EDJ = Doy = L% (5.22b)
Hence _ _ are the unbiased estimates of L¥ and 1%, respectively.
L¥ and L} e

..-22—



The variance of 56 is given by

7 -

Var[ag

Then, the variances

Var{i*]

and

VarilL

]

]

*
F

Similer to Egs.

where R€ (£) is the
D

R, (&)
b

1

Ells

of

2 - 52} (5.23)

L*¥ and i; are expressed such that

Dzvariaé} (5,28a)
DZJVar[EE] (5.240)
5.18-5,17, Eq. 5.23 can be written for DG + ®

2 Jm , . .

= RZ (£)dg (5.25)
DO - fD

correlation funetion of fy(x) given by

E[f

D(x+£)fD(x)]

X+E’+-é

[ 5 Elf(y)f(z)ldydz
x+£-§

T )

R..l g+, ~£,)de, dE

o' 0 £7 1 72 1772
D lgOl Y.
b

If the indefinite integral process F{x) of f(x) is homogeneous, R, (£} is

given by

24

l_
z

v

r \

r

(2R (8) = R_(g+D) - R

L
[P—

ppl&D) (5.27)

fa)
O
-

where R__(£) is ths correlation function of F(x)., For D >> L¥ or L;, Egs.

FF¥

5.26 and 5.27 may be written as



= -

i
e (8 = 5 I Regleveglog (5.28)
and
R, (£) = 25 R (E) (5.29)
f D* TFF :
D
From Egs. 5.25, 5,28 and 5.29, the variance of ES is given by
1 r- 2 3 i (e, 3 2 4 =
Jarch] = 5357 G&{im Rff\g+;0}ogo] when Sff{o) = 0 (5.30a)
and
Var{g2] = 8 jm RZ _{E)d when S.,(0) = 0 (5.30b)
BLop T BB 4, TretEIeE moopeld) = -30b)
Hence the variances of the correlation scale estimztes are from Egs. 5.24 and
5.320,
Var[L#] = &- [ R..(£+g Jar 12 when S_..(0} = 0 (5.31a)
== Dy Lo ff77-07%%0° £f '
and
N
Ver(iz] = Jﬁg L R2-(E)dE when 5,,(0) = 0 (5.31b)

Thus L* znd LY given by Egs. 5.18-5.20 are the consistent estimates of L¥ ang

o

L; since Varii*] and Var{L?] approach zero as DO » e, Eguati

e

n 5,37z is iden-

tical with that derived by E. Vanmarcke (1983). It should zgain be noted that

«
i

Lx)
{m]
(81
"
i

is derived from the assumption that f(x) iz a homogeneous Gaussian

process with zerc mean and unit variance, Hence, the correlation function

....2}_:...



Rff{g) in Eq. 5.31a is normalized with Rsp(0) = 1.
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6. CORRELATION SCALES OF TWO-DIMENSIONAL STOCHASTIC FIELDS

6.1 Variance of Averaging Process

In this section, we briefly discuss the correlation scales of two—-dimen-
sional stochastic fields by extending the progedures developed in previous
chapters, For the original homogensous stochastic field [{x,y) with zero msan

and variance oi., the averaging field F,(x,y) may ve defined as

£f’
D D.
X-}-.—-—-x- y-‘-u.-i
1 2 2
fﬁ(x,y) ol I f(u,v)dudy (6.1)
’ ) D D
R N
2 2

where & = Dny’ and DX, Dy are the aversging distances of the x~ and y—coordi-

nates, respectively., Introducing the following indefinite integrals

BFx(x,y}
F (x,y) = | £(x,y)dx o X0 r(x,y) (6.22)
X ox%
oF (x,y)
F o(x,y) = J f(x,y)dy or e = £(x,7) {6.20}
¥ 3y
and
- . 3% (%, .
F(x,y) = ff f{x,y)dxdy or 3—§£%§Xl = I'{x,y} {6.2¢)

If they are homogeneous, the power spectiral density functions of Fx(x,y),

*13

Y(X,Y) and F(x,y) are given by

DRI S S A -
SF . (KX,Ky) = e (6.38)
XX X
S.-{e ¢ )
It %'y P
. = A £ 2
SF_F (NX,Ky) Kz' \v'33}
yy y

and
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S_(k_,k ) = Eﬁﬁiﬁﬁiiiz
FF' "%’y K2k ?
Xy

(6.3¢)

where SPD(KX,Ky) is the power spectral density function of f{x,y). As is well
i1

known, Sff(xx,xy) is related to the correlation function Rff(gx,gy) through

the Wiener—~Khintchine transform pair:

- i{k g +x £ ]

, cY o o] XX VY s s (6 Be

Sf‘f(rx’ky’ 'T J’ j qf@(ﬁ F, }v ﬂ&xaiy \6.;G)
i{k g +x £ )

P = - \ xR A En)

Rff{ax’gy) iw [w SfD(K K I€ GKXde (6.4}

Wwhere Koo Ky are the wave numbers of the x- and y—coordinates, respectively,

and gx, £, are the separation distances of the x- and y-coordinates, respec-

vively. By taking into account the relations n = {E ,g o= ‘ff(_ gx,g )
and Rff{ix'— Ey) = Rff(“ £x,gy), Eq. 6.4 is alsoc expressed as
Sff(mx,my) = (2i)2 1: J: Rff(gx,Ey)cos(nxgx+zygy)dgxd£y {6.5)
Rff(KX,Ky> = i: I: Sff(K ,Ky)cosf< £ +k £ Jde dx {&.6)

Similar to the discussions in Section 2, the iIntegral processes FoOt,y),
Py\x ,¥) and Fix,y) are not always homogeneous. The conditions of homogeneity

of' the integrel processes depend on the behavior of the power spectral density
E! I ¥

funetion Sap(xx,xy) of the original process f(x,y) at the origin Ky = Ky = 0.
iy
1 . . . 1 R ] & r - l
Using asvmptotic expansion of cos[zxgx Ky,y], Sff(xx,ny) can be expressed as
w @ { . r ]2 { > Jlg»
(K_E *K E VK E tK £
1 XY VY XX ¥y ;
S -t ( (1 - . s en]a
ff((x’Ky) (2w)* !m Iw Rff\gx’gy)"1 2! - bt jag, d
1 =l - . £ 1 o
= - R * - IrZe 2r2i0,. .
(2m)* Im Iw Ir E;X’E i 2‘(Kxgx Ryay Ekxkyéxgy)
* lw [K“i“*m“f"+6kzngzf2 + Ui g° g +2k K1E E’]*"'Wdf df (6.7)
bt O I X7y XY % v 195 ¥
If the process 1s guadrant symmetrie, i.e., fp\g ,g ) = R°?(€x’— gy), Eq. 5.7
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is expressed as

1 o -
Sff(KX,Ky) = 3oy J f Rff(gx’gy)[1

- —o

:uld

2r2 2pr32
!(fxax+xyeyJ

+
|_.

y

Wpbo  hph 2. 2p272), ..
(c;EprrrEsrbeieieres) - Jdg dg

(6.8)
To simplify the snalysis that follows, we wiil consider the gquadrant symmetric
process,
From Eqs. 5.3 and 6.8, the conditions of homogenelity of the integral pro-

cesses Fx(x,y), Fy(x,y) and F(x,y) may be summarized as follows:

Case 1: 8,-(0,0) =90 Fo(x,¥), F (x,¥) and F(x,y) are ali nonhomogenecus
C s XX, Yy 3 ;
Case 2: 5,,(0,0) = SPfLO,O) = Sff(OO) =0 F(x,y) is homogensous

(W]

- , Yy _ . o XX
Case Srp(0,0) Sff(0,0) = 0 and Sff{0,0} *

[ ]

Fx(x,y) is homogeneous

N . %X _ vy - . .
Case U: 8,:(0,0) sff(o,o) = 0 and sff(o,O) 2 0 ry(x,y) is homogeneous

Ther X ¥y =2 t i orni sty iy 113 f -
where Sff{O,D) and sff(o,O) are the second derivetive valuss of Sff(xx,my) at
the origin given by
378 (e k) . o
xX _ 8 " x'y IS N r2 - 0s)
Sff(o’o) B 3k 2 kK o=xk_=0  (2%)* j I ”fof(gx’gy’ogxdEy (6.92;
¥ Xy —® -
328 (K s K ) . & @
}ry - ff X y - - i s . . £ ond
574(0,0) = 5  ex =0 €Ok im i 6280 (6,06, )08 a8 (6.0b)
¥ Xy @ -
Similar to Eq. 2.7%, the variance oz of £,{x,y) is given such that:
k D ¥ D
X X .Yy
= @ 51n—§—— 2 81n—§——}2
2z _ .
Gy = I f [ p— _— Sff(KX,Ky}decxy {6.10a)
e ome X X y ¥
el
, fDX J.Dy2( IEX';{ ’EYI]R i . -
=% Py U R (R )dE dE (6.10b)
—DX —Dy X v



- = « 85 {rx k) x D K D
16 fr ! . .
02 = &7 K2:2 Y (sin ; X)2(sin g y]zdmxdry
— Xy
16 L 1~cosxxDx 1~cosk D
= F :L—_‘ .J:m SFF(KX,K}’){ 2 }{ > }QKXGK}’

chi

:r:,l s

In the derivetion of Eqg. 6.11, ths

for a quadrant process are usad:

L}

bff(Kx’Ky}

[+ ]

= f f Seplk

~ou -

For Case 3 where Fy{x,y) is h
6.10 is
© @ § (K
2 42 Ifx!
G;_ = {'9—') ,[ f 2
¥ e - ¥
2 o o
= Lg‘)zf f Sp p (%
¥ —o —wm X
2 [e=] =]
Y I J SF F (KX’K
¥ e - vy
For Case U where F, {x,y) is homogs

ny

SFF(KX,Ky){1-cosxXDx—eosmyDy+cosxxDxcosmyDy}dKXdK

\

¥

= Rpp(D,,0) ~ RFF(O,Dy)} (6.11)

following Wiener-Khintchine relationships

A - . 5 s
Rff(gx,gy;cosszxoos<ygyogxo£y

X,Ky)cosxxgxcosx iydedKn (6.12b)

Y ¥

omogeneous, the varizance oﬁ given by Eq.
KYDY
) x b, sin——= ,
Y [sin f x1 { 2 1 de dx
2 - b - Xy
Yy
2D
x D sin—a—L »
'S }[sip * X 2[ 2 ] de dx
? 2 Kk D - Xy
yy
£ D
LN X
sim—>—= .
y){T—cosxyDy}[ ) ] axxdx {6.13)
XX
2

neous, Eg. 6.10 becomes:
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5 sin—§—~ 2
o = Pz i l Sp ¢ {KX,Ky)[?“cosxyDy][—E—ﬁwm"] dKXde {6.14)
y ~o - yy X X

6.2 Definitions of Correlation Scales of Two-Dimensional Processes

Whan D = D =
the window function

o=

or = ||

0 LD

Cn the other

depending on

&

hand, for D, =D, » =,

the behavior of

0, the variance c; given by Eq. 5.10 approaches U§f since
in Eq. £.10 approaches one. That is,

3 s = 2 D - - -
Sff(zx,my)crxczy Olp as D, Dy 0 (6,15}

. the variance °E takes the following forms

the power spectral density function SFP(Ky,Ky) of
- & Y

f(x,y} at the origin.

For Case i from £g. 6.10 when Dy, = Dy - w,
2 _ 4 " rsin g 2r8in vy, 2u 2v
%= 5o 1 | IR (5 Jauay
Xy = - X ¥
. & ¥ rsin u - :° rsin vy,
55~ Spe(0,0) f [ o 12éu | [=———]2av
%y ] -0
(er)*®
= 0)
5D Sppl0 0
Ly
17 o .
T DD I ! Rff(gx’gy)chqu (6.16)
Xy = —»
For Case 2: from Ea. 6.11,
g2 = b R..{0,0) = A g2 as D_ =D, » = (6,17
4 (D.D )2 "FF*7Y (D.D_)* “FF X ¥ o
Xy iy
where G;F is the variance of Fix,y).
For Case 3: from Eqg. 6.13,
2 2 2V Sin vy,
2 _ £ = - o Z . -
6, = 37 D f f S? F [ 5 J{i COSKXDX][ ; ] dxxdv
X —= -a Ty ¥
2 2 @ w :
=2 .2 _ o sin vy,
3% ' 3 J F = {KX,O)[ﬁ COSLXDX} f [ v GVG&X
X y —® XX —a



- %, . j Sp {K 01 [1-cosk D Jax_

-3
X
mz._e_a N
=357 ° 3 RF P (0) as D = Dy + (6.18)
X ¥y X X
where RF o (gx) is defined such that
X X
Ry o (€)= [ R, _ (6,6 )dE (6.19)
FF % 2% FF X'y N *
XX = Ty X
than
i .
S¢ ¢ {KX,O) p f Fe ¢ (E Jeos k & dE (6.20)
X% —w X x

the inverse transform reclaims

= s {6
Bpp (E)) f Sp g (K,,0)cos AL (6.21)

For Case Y4: from Eg., 6.11%,

2—21.(..2—. = =
5, =3 57 RF F (0) as D, = DY + (6.22)
x y Yy
where RF o (g ) is defined by
yvy
1 f”
RF P (ﬁy) = 5T (E E )dﬁ
Yy e Y Y
= S.. a, cos ¢ £ 4 6.2
im fyFy( ky)eos kL odcy (6.23)
and
‘i w
2 E E
SH- (G,Ky) = f F (E Yeos g dg (6.24)
yy - Yy

™

Summarizing Egs. 6.15-6.18 and 6.22, the correlation scales of f{x,y) can
be defined as follows.

For Case 1:

) 2 as D, p s (6.252)



where A%
A% =

For {ase 2:

where A;

A= {2m)*

For Case 3:

H=Syx}

1
0%

bl =]

g
FF 1
2 = —s A
.Jff, 2 F
R..{(0,0)
FF*~?
= (2m)¥esr—es =
Rg;(O,O)
02
L¥2
X G2
DZD
Y

is the correlation scale of f{x,y) for Case 1 defined by

[ ] Rep(E,,8,0d8 dE = 55 §..(0,0)

-~

2 defined by

— -

f jm SFF(KX,Ky)dKXde

= (27) 3 ——

J I K;K

—0 S

2 L 11/3
If ~= "% x -
{m SF FX(KX,O)GK s
[4m = 2 ]
2 s .
1@ im K FXFX(KX,Ky)kadK

o

2
y"FF

(KX,Ky)dxxdmy

is the correlation distance of f(x,y) for Czse 3 defined by

(6.25b)

{6.26)

(6.27a)

{(6.27b)

{56, 28a)

(6.28b)

(6.292)

{(6.295)

{6.30a)



The equivalent area of f{x,y) for Case 3 may be defined by

¥ . ] ¥2
Ax L {6.30¢)
For Case 4:
2 _ 2 _ o
gy = o as DX = Dy + 0 (6.312)
L¥2
— }. 2 - _ - -
=55 ¢ as Dy = Dy + (6.31b)
Xy
where L§ is the correlation scale of f(x,y} for Case & given by
2 . 11/3 i
¥ = —
L% [Uz | Ry o (gX,O)uF,X] (6.32a)
= yy
im SF 7 {O,Ky)de ‘/3
= [ur ——d ] (6.320)
J J 2S5, . (¢ _,x )dr dk
F F X773 X
AR ¥ y
The equivalent correlsation area may also be defined by
A¥ = L¥2 (6.32¢)
y b
If we consider the specizl gase whers DX = Dy = D, the 2bove resulis be-

come SO simpie that the following results may be useful for th estimstion of
the correlation scaeles [areas) of £(x,y) using the graphical mehtod indicated
in Cheapter Y for one-dimensiconal stochzstic processas.,

For Case 1:

=

- [3__] 02 a2z D =+ = (6.33b)

where L¥ 1s the equivalent correlation distance of the corrslation scale A% of
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f{x,y) defined by

L¥* = J/AF (6.33¢)
For Case 2:
GE = g2 as D + 0 (6.34a)
(LE“L)N\ - - ~
= _[i... a 285 D + = (0-3L5b}

where L; is aiso the equivazlent correlation distance of the correlaticn scale
(

L; = JA; (6.347
For Case 3:
g, = o* as D » 0 {6.35a)
L* 5
= (Eﬁ) g? as D + @ (6.35b)

The eqguivalent correlation ares Ai of f{x,y) for Case 3 is given by Eg. %.30¢.

For Case U4:

= g as D » D {6.362)

e b

- (52) g2 as D + = (6.36b)

The equivalent correlation area A; is alsg given by Eg. 6.32¢.

i

Klthough Eqgs. 6,350 and §.36b have the same form, it is easy to dis-

tinguish them. In faet, if we select z rectangular ares where Dx = 4D =D

r

for eyample, from Egs. 6.29b and 6.31b, a di

-y

Fal
fer

0

nee appears betwean Egs.,
6,35b and 5,36b such that E(L;/D}acz for Case 3 and Tﬁ(L?/D}SGZ for Case L,
By this difference, we can distinguish between Cases 3 and 4. 1In Fig. 1, the

1
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approximate relationships between N and D given by Egs, 6.33-6.36 are shown
by solid lines. 1In the same figure, three examples of exact oA—D relation-
ships {Egs. 6.10a, 6.11, 6,13 or &.14) are plotted (dashed curves) using the

following particular forms (separable types) of the correlation function or

power spectral density function which satisfy quadrent symmetric conditions.

Power spsgtrum for Case 1:

2 .
S..(x ,k ) = ks b b exp|[- [bXK"‘]2 - (byky)zl (6.37a)
Ty L Xy : 2 2 : :
% = 1b b, Lk = JEF (6.37b)

Power spectrum for Case 2:

o1t (O rbYKY\Z]
{ _ il iays 22 - - -
Sff‘Kx’Ky) o bxbyKXKy expl~ | 5 ) (5] (6.382)
X = ¥ o *
AR = BBy L = /AK (6.38b)

Power spectrum for Case 3:

U;f DKy 2 By¥y 2,
¢ = 3p .2 - - y ¥
Sff\xx,ny) Br bxbykx exp| ( 5 5 ) ] {(6.3%a)
L r b 1/3 b% = L¥2 )
L¥ e bxby] , &% = L¥ (6.39b)

Power spegtrur for Case 4:

U;P b K. 2 0K, 2
Sff(Kx’K ) = SW‘ bxbix; expl- | 5 ] - {—%«l) ] (6.40a)
L - [/ bxb;]‘/3, M- Ly (6.200)

It can be observed from Fig. 1 that 211 these curvss asymptotically ap-
proach the s0lid lines in the rangss where D - 0 and D » =, zngd tnat in the

intermediate range of D, the solid lines tend to reprasent the upper bound of

all the dashed curves.
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6.3 Numerical Examples

In order to visually illustrate the correlation scales and patterns of
variation of f(X,y), we pr3sent in this section scme numerical examples simu-

lated by the following equations for quadrant symmetric processes (Shinozuksa

and Herada, 1986).

M N
£ (x = V2 7ovEs. (k. , A A
r{x,y) m£1 nz L[ x5y JJKX Ky

[ + ¥ Y+ HES ( ~- +¢ &
x Lcos(rcx!rx Ky ¥ ¢1mn1 coslk, % (y Ve, ]} (6.40a)
a n m n mn
“yu “u
= — = yu = -~ = .
b, o axy o me mAK Kyn nAxy (6.400)

where ¢ and ¢ are independent random phase angies uniformly disiributed
inn 2mn

netween 0 and 2w. Kxu and Kyu are the upper cut-off wave numbers of Ky and k_,

respectively.-
Example 1: This example is for Case 1 using the power spectrum given by

X ¥
= 27 (rad/m). A sample funection of f£(x,y) and th

Eg. 6.37 together with the following data: ¢ = 1, b = 1.0 (m), b_ = 1//2

(m), M=N=6L & = €

size of the correlation arez A* in this example are shown in Fig. 2 In Case

1, the correlation area A¥ defined by Eq. 6.206 may signify that the correlszs-
tion of f£{x,y) is extremely high within the size of this arez 4% (= sb b =
2.22 m*¥},

Exazmple 2: For Case 2 using the power specirum in Eg, 6,38 together with

the following deta: o =1, b_=b_=7/5 (m), M=K =868, v = i
X ¥y wu Y

Y

Az

m?) in

(rad/m). In Filg. 3, the size of the correlation ares A; {= byby = a.

this example and a sample Tunction are shown. For Case 2, the correlation

area AF defined by Eg. 6.28 may zlso be useful for representing the size of
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the areaz within which highly correlated observations are made.
Example 3: This is an exmaple for Case 3 using Eq. 6.39 with the follow-

ing data: o = 1.24 (cm}, bx = 1.131 x 103 (m), by = 3.012 x 103 (m), M= N =

64, k= 10/b_ = B.8Y x 105 (rad/m), ¥ = 10/b
X yu Yy

Xu ¥
size of the correlation distance L; (= [V/7 b;by]1/3 = 1897.4 m) in this ex-

3.32 x 1073 (rad/m). The

ample and a sample function of f(x,y) are shown in Fig. 4. 1In this case, rel-
atively rapid variation zlong the x—axis is cbserved, comparesd with variation
alorng the y-axis. To arepresent this variation along the x—-axis, the correla-
tion distance L; defined by Eq. 6.30 may be suitable, However, the signifi-
canice of the egquivalent area (A; = L;z) defined by Eg. 6.30¢c is quite vague in
this example,

In ¢onclusion, the correlation areas A% and A; defined by Eqgs. 6.26 ad
6.28 are useful for measuring the area size within which highly correlated
data is observed. The correlation distances Li and L; defined by Egs. 6.30
and 6.32 may alsc be used as measures of highly correlated distances along the

¥~ and y-axes, respectively, in two dimensional stochastic variation problems.



7. SOME NEW APPLICATION EXAMPLES OF CORRELATION SCALES

T.1 Peak Mean Faector

As briefly described in Section 1.2, the correlation scale has been suc-—
cessfully used in many engineering fields as 2 measure of approximately ob-
tazining the egquivalent number of independent observations from stochastic pro-
cess data with finite intervais., In the context of this interpretaticn of ths
correlation scale, we present here a new approximate observation cof the proba-
biolity distribution of meximum values of stochastic processes,

In many applications of stochastic process ehtory to the analysis and de-
sign of structures, a ceniral question is as follows: What is the absolute

<

maximum falue of f£{x) with zerc mean over the range 0 £ x £ L where the corre-

-

ation function or the power spectral density funetion is known. If the abso-

lute maximum values Y is expressed as po where ¢ is the standard deviation

r’ fr
of £f{x), and p is the peak stochastic factor, the mean and standard deviation

o

of p is given by (Davenport, 1964);

(7.%)

£ V2 En[%h)
op e ! (7.2)
L
Ve V2 Rn[g—)
f
where L. is the apparent weave length defined by
~ YAy
O s E,.(0] fm Spelxids
L= I_ iz D,f*
£ =2 T T 2 gy < 20 (7.3
ik i " 2o .
K23 f,(!«‘)(}K
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Equations 7.1-7.3 assume the existence of I..f defined by Eq. 7.3. How-
ever, when the derivative f'(x) of f(x) does not exist, L. become zero (Case I
process), In this case, the above equations are useless. Hence, we need
another stable expression for the peak factor p. The following equations for
peak factors are besed on the the combination of the largest value distribu-
tion function (the first type) and the correlztion scales 4 and C indicated in
Table 1-1.

For the probability density function of the local maxima X (loecal points)
of' a homogeneous Gaussian process, the general expression is well known as

(Cartwright and Languet-Higgins, 1956)

2

- £ - ¥
Fo(y) = expl- 577}
2m ¢
/e : | y/TE
+ ot enpl= Llry (P (7.4)

N . \: . : s . s :
where ?X(-) is a normal distribution function and ¢ is the irregularity factor
and lies between 0 and 1, For e = 0 (completely narrow band process), the
first term vanishes and Eq. 7.4 reduces to ths Rayleigh distribution such that

z

L(¥) = ;2 exp{- %;z) (7.52)

R
F_(y) =1 - exp(~ gng (7.5b)

For € = 1 {(cempletely wide band process), only the first term remains and Eq.

7.4 becomes & Gaussian distribution with zero~mean and variance u? such that

(7.6)



The distribution functicn is denoted by Fi(y). The relationship between the
local peak probability density function fx(y) and the homogeneous (ergodic)
process f(x) is schematically illustrated in Fig. 1.

On the other hand, using the exact distributien function FY(y) for the
greatest peak values among (XE'X2""'Xn) that are statistically independent
and identically distributed with Fx(y) as the initigl variate X such that

{Gumbel, 5958),

Fy(y) = PPEY s vyl

=P[X. £y, X, Sy, «u., XS]

,1n
[F ()] (7.7)

we may have an approximels distribution functien for the "greatest peraks™ of
the stochastic process f(x) over the range 0 $ x £ L when in Eq. 7.7 we inter-
pret Fy(x) as the distribution function of the distribution density function

fx(y) given by Eg., T.4 with n given as follows:

_ L
1‘1—1—*' or

r1w
K

(7.8)

where L* and L? are the correlsation scales {A& and C in Tablzs 1-1} such tha

o

o= L [ R (8)ag (7.92)
and
1 2R (0)
TR Y S
L% e L, Y R§f(0) (7.9b)

where Lf is the apparent wave length defined by Eg. 7.3. In Eq. 7.8, n signi-
fies the equivalent number of independent observations contained in the inter-
val L since the corrslzation sesles L* and L? are the measurss of the highly
correlated lengin of f(x). TFinally, taking into account the fact that the

peaks and troughs generally tend to appear as the same number over a finite



length, the approximate distribution funetion Fﬁ(y) for the absolute maximum
value of f(x)} over the range 0 € x £ L may be given by Eq. 7.7 with the fol-

lowing n instead of the n given by Eq. 7.8:

L L
n = %; or %¥ (7.10)
by

As is well known, for large n and exponential type initial funetion
Fy(y), Eg. 7.7 has the Type I asymptotic form classified by Gumbel (1958) such
that
~a_(y-u_)
FY{Y) = expl~ e r " i {7.11a)
where Ug = the characteristic largest value of the initizl variate ¥ and oy =

an inverse measure of the dispersion of Y which are determined by
3 - _
FX(un) =1 - = and a_ = nf (un} (7.11p)

The mean value EIY] and standard deviation o, of Y zre al

o

o given such that

. 0.577215 )
E[Y] = un + _"'“"""""“"""""‘“'a (T.TEG)

1\
As the two extreme cases where Fy(y) = Fi(y) and Fx(y) = F;(y), Eq, 7.12 be-
comes as follows:

. .. Ce L _R
For a Raleigh distribution r?(y):

E[P] = ELY] - IR+ 0.577215 (7.13a)
g Y2 Inn
°v g 3
% T T L T (7T.13b)
6 V2 inn

. . . N
For a normel distribution Fx{y):
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E[P] = EfY] - /2 inm - gn(in ni+in Ux . 0.577215 (7.14a)
¢ 2/2 Ln n Y2 %n n

S R T (7.1

.

The mean peak factors given by Egs. 7.732 and T.14z are plotted by solid
curves as a function of n in ¥ig, 2. The dashed curves in Fig, 2 are the re-
sults from Eg, 7.7. From Fig, 2, Egs. 7.1% and 7.1% may be used for n > 10.
or small values of n, Eqgs, 7.13z2 and T7.14z tend to give & larger value of
E[PJ. Since for the intermediate value of the irregularity factor e, the val~
ue of E[P}. Since, for the intermediate values of the irregularity factor e,
the values of E[P] may lie between the two extreme cases (twe solid curves and
dashed curves in Fig, 2} wifn the Rayleigh distribution and normal distribu-
tion as the initial distribution Fy(y), a more simple approximation may be ap~

propriazte for the mean valus of the peak factor:

ELP] ¥2 &¢n n nz2 1.65

(7.15)
= otherwise
Equation 7.15 is also plotted by a dashed cwve in Fig. 2 indicating the ap-
proximate behavior of E[P].
It is observed from the sbove discussion that ths mean value and standard
deviziion of the peak factor P derived by Davenport (Egs. 7.1 and 7.2) are

identical with those of Eq. 7.13 with np such that

—_

L'*'Im
[

oL oL
N, = = * TR < TSt TE (7.16)
Dby 5 LEOHAES LR

The scaling factor 1/Y2 7 in Eq. T.1

an

ig due to the fact that, for z narrow
band process, the peaks and troughs tend to appsar twice within the apparent
wave length L, whieh is longer than the correlation distance L¥ (Lf Y L?)

as shown in Fig. 1. However, the effect of n on E[P] is not so sensitive %that

“LI:E"'



the difference is small between ELP] with n given by Egs. 7.1C and 7.16 as
shown in Fig. 2, In fact, for example, for n = 40 in Eg. 7.10, Eqg. 7.16 gives
Ny = 4O/4.443 = 9,0, From Fig. 2, the corresponding mean peak factors are
read as E[P] = 2.9 for n = 40 and E[P] = 2.4 for np = 9.0 indicating little
difference. In turn, for a wide hand process where L% = 0, the number n =
2L/L* may tend to give smaller values than the true number of peak values. In
fact, for pure wide band processes {e = 1) where the correlztion function is
expressed by the Dirac delta function, the correlation scale becomes a finite

value of 2ﬁ8ff(0). However, within this interval L¥ = Zwsf (0}, true peaks

r

may tend to occur more than once. Hence, the mean value of the peak factor
given by eq. T.1da with n = 2L/L¥ may give a lower value of E[P].

In conclusicn, for practical use of the peak factor of the absolute maxi-
hum value of f{x) over the range 0 £ x £ L, as a conservative mean peak fac~
tor, Eq. 7.13a may be appropriate with n given by Eg. 7.10, and Eag. 7.1%4z with
n given by Eq. 7.10 as & lower valus of the mean peak factor. For more sim-

plicity, Eq. 7.15 may bs useful with the n given by Eq. T.10.

T.2 Seismie Ground RMSrEstimate

in contrast to the earthguake-resistani design of above-ground structures
where the inertizl forces induced by ground acceleration are the mzin consid-
eration, the spatial variation of the ground motion is of primary importance
for buried lifeline structures such as pipslines and tunnels. Consequently,

the ground strains and relative displacements between two points along pipe-

[}

ines play main roles in the seismic design of such buried lifeline struo-
tures,
Applying stochastic process thsory, we can estimate the rms {(root mean

square) values T, and o of the relative displacements between two points on
D



& ground surface and the ground strain along the pipe axis at time instant t =

ty form the following equations:

b
= 2 S L¥
o, V2 % Ouu b sL* (7.17a)
D u
-z D> ¥ 7.17b)
V2
= Ye < L¥
3 L_g %uu D& LY (7.182)
v
S *
5 “uu D> Ly (7.18b)

wnere D is the relative distance betwen two points and Lﬁ is the correlation

distance of the seismic ground displzcement u(x,to) at t = t, denoted by C in
Teble 1-1. In Eqgs. T7.17 and 7.18, the parameters are only T of the ground
displacement, the correlation distance L¥ and relative distance D betwesen Lwo

points on the ground surface. More details and = field dats analysis can be

seen in the paper by Harada and 3hinozuks (1986).
7.3 Miscellanesz

In a digital time (spatial) series analysis and simulation, we must de-
termine the upper cut-off frequency W, {upper cut~off wave number Ku) above
which the power spectral density function is considered to be zero. Fo5r this
upper cut=off wave number KL the spectral scales defined by Eq. 3.16 may de

used as a measure of w, (Ku) such thst

27 27 -
Ku 2z k¥ or K’?‘(ﬁ or -T-;) (7.19}
r

In a stochastic finite element analysis where the materizl properties or
boundary conditions are assumed to be stochastic, we Fface the determination of
the finite element size corresponding tc the randomness of the material prop-
erties in space. For this problem, the correlation scales may also be useful

a5 a measure of the relationships between the element size and the material

~Y ki~



randomness in space.



8. CONCLUSIONS

In this report, we reinterpret the correlation scales previously defined
in the literature from the viewpoint of the statistical analysis of observed
field data. By considering the averaging process and the difference process,
two typical definitions for correlation scales are consistently derived, and
also new definitions for the same corrslation scales are obtained which make
it possible Lo estimate the correlation scales from variances easily calcu-
lated from cobserved field data. The statistical assessments of the estimation
of correlation scales from the variances are also briefly presented.

By extending the procedure for one-dimensional stochastic processes to
two-dimensional stochastic processes, the correlation scales (area) of two-di-
mensional processes are defined and visually illustrated using a digital simu~-
lation techique. An estimation procedure for these corelation scales for two-
dimensional processes is presented,

Finally some new application samples of correlation sczles defined and
reinterpreted in this study are briefly presented. They are the applications
of correlation scales into (1) the approximate distribution of the maximum
values of stochastic processes over z finite length, {2) the estimation of the
selsmic ground rms (root mean square) strain, {3) a measure of the upper cut-
of f frequency in a digital time series analysis and simulation, and (4) =
measure of the relationships between the finite element size and the material

randomness in stochastic finite element analysis,
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Table 1-1 Summary of Definitions for The Scale of Correlation

Items Definitions Authors
A 1 me<€) de Taylor (19353), Batchelor (1953),
2_. : Tatarski (1961), Monin and Yaglom (1963),

g Panchev (1971), Bendat and Piesol (1971),
Lumley (1970), Vanmarcke (1983)

B }Q fm|R(E)[d€ Stratonovich (1967)
O’ -0
2R(0) Tatarski (1961), Monin and Yaglom (1965),
C B G) Lumley (1970), Harada and Shinczuka (1985)
tg""é;hfuz)l dg
D Lin, Fujimori and Ariaratnam (1979)
g”IR(z) Rt

Note: 02 = R(0) = Variance, R(E) = Correlation Function, R"(£) = dzR(E)/ds2



Scate of Correlation ® Mean
g Vamrj?i Rodte I, ® Variance
a Route g ® Scate of '
lRou“re o Corn;glaﬂon
- @ Correlation Function |
 Covariance Function | royte 5

® Power Spectral Density
Function

Fig. 1-1 Schematic Diagram Showing Relatioﬁship

Between Stochastic Process And Its Statistics
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4-1
Table 1 AUTO-CORRELATION AND SPECTRAL DENSITY FUNCTIONS

. 3024077

Type R(E) S{k)
b? 1 ~-bik
! EZ+h2 501 °¢ <l
b*(b2-3%2) 1 ~blk
2 (eZ+05) 3.y 0'x’e I
D (b*-10b2E2+5E") 1 blk
3 RGO 5T ooxte I
b (bE-21b E2+35b2E4=TES) 1 b
! e sigy b7xee I
b10(D2~-36b8E2+] 26D E “~B4b2ES+9E®) 1 -
> N zigy Oxe ol
b12
6 TET+pZyIT * (b °-55b°E2+330b5E “~U62b EC+
+ 165b*£°-11g1 %) 2.;0, SEMERLIY
b4m2
Table 2 AUTO-CORRELATION AND SPECTRAL DENSITY FUNCTIONS
Type R(E) S(k)
_(EJZ 2
b 1b bk
1 e 5= exp[- (=) ]
: 2 2
Eva *(S)z 10 DKy 2
2 [T 2[3) le 3 k%exp[- [5") ]
2/
Ey, U “(%)2 1 bs b
3 [1- “[g) 3[5)"]9 5 - k* exp[- (5_)2]
GE e
8 (& b 1 b7 bk
4 [1-6(2)2+u(8)*2(5)¢ e > xSexp[- (35)2]
b b’ T15'Db " A= 3
(532
2rE b 1 b* bz
5 [1-8(%)2+8(8)-38(5)e+18 (E)e e 5 k®exp[- (3%)2]
b b’ 15'b’ "105'H & 2 eaorm 2
-2 2
4o 16/ 2 b 11
6 [1-10(2)2+32(2) L3R +12(f) *5az(E) e Je T2 ctoexp[- (85)2]



Table 4-3 Examples of Family of Correlation and Spectral Density
Functions Where 5(0) % 0

Type R{(&) S(x)
L 1 -|b§| lg] <b 2 (1 - cosbk)
0 otherwise b |<2
2 e _LDE—L) :D~ 1
T k) 41
3 1+ —L&;‘[-]e"(%l.) 2 L 7
Tk + 1]
(L& 8b 1
4 (1 + 8L 182y -0 8 .
b 3% 3 (02 + 170
£.2 b2 ‘
-2 1b -7
5 e b 2/7? e 2
6 1 —%’»b e_b!KII
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